林浩雄Lin, Hao-Hsiung臺灣大學:電子工程學研究所曾敏男Tseng, Min-NanMin-NanTseng2010-07-142018-07-102010-07-142018-07-102009U0001-1001200903032600http://ntur.lib.ntu.edu.tw//handle/246246/189152本研究以有機金屬化學沉積法(Metal Organic Chemical Vapor Disposition, MOCVD )成長雙載子、場效電晶體單石積體結構(BiFET)。我們所使用的BiFET結構,其下層為AlGaAs PHEMT結構,而上層為InGaP HBT結構,其中HBT的次集極層也同時用作PHEMT結構的接觸層。我們在次集極層下成長一層heavily n-doped InGaP,作為etching-stop layer,用以控制gate recess的深度位置。整個完整BiFET結構在同一次磊晶成長中完成。我們使用電容-電壓量測、van der Pauw量測、高解析度二次離子質譜術、光激螢光譜及x-ray diffraction量測分析PHEMT的特性,並發現成長HBT的thermal cycle,會造成heavily n-doped InGaP layer及donor layer中Si原子的外擴散,致使PHEMT的片電子密度(sheet electron density)增加及電子移動率(electron mobility)下降。我們在本研究中降低HBT的成長溫度,成功地減少heavily n-doped InGaP layer及donor layer中Si原子的外擴散,使得PHEMT能夠維持原有的特性,且HBT的直流特性也能維持與較高溫成長HBT時相同的特性。We have investigated the optimal growth conditions for integrating heterojunction bipolar transistors (HBTs) and pseudomorphic high electron mobility transistors (PHEMTs) together by metal-organic chemical vapor depositon (MOCVD). In the structure of HBT and PHEMT (BiFET), AlGaAs PHEMT is at the bottom, while InGaP HBT is on the top. The HBT and PHEMT share a heavily n-doped GaAs layer that serves as the cap of the PHEMT and the subcollector of the HBT simultaneously. A heavily n-doped InGaP layer under the HBT subcollector layer is used as an etching-stop layer for controlling the deepness of the gate recess during the PHEMT process. Through the investigation using capacitance-voltage measurement, van der Pauw measurement, high resolution secondary ion mass spectrometry, and photoluminescence and x-ray diffraction measurement, we found that the thermal cycle of InGaP HBT results in the out-diffusion of Si in the heavily doped InGaP layer and donor layer, leading to the increment in the sheet electron density and the decrement in the electron mobility, both degrading the performance of the PHEMT. After lowering the growth temperature of the HBT, Si out-diffusion is inhibited, which brings about the performance recovery of the PHEMT. Though the temperature is reduced, the DC characteristics of the HBT are still as good as those of the HBT grown at high temperature.中文版口試委員會審定書……………………………………………i文版本口試委員會審定書…………………………………………ii謝……………………………………………………………………iii文摘要………………………………………………………………iv文摘要………………………………………………………………v錄……………………………………………………………………vi表索引………………………………………………………………viii圖索引………………………………………………………………ix一章 簡介……………………………………………………………1.1為什麼要發展BiFET………………………………………………1.2本論文的工作與解決的問題………………………………………2.3論文架構……………………………………………………………4二章 BiFET的磊晶成長與特性驗證…………………………………5.1單獨PHEMT capless結構及BiFET結構的磊晶成長…………………5.2 BiFET的特性驗證製程………………………………………………5.2.1 Hall bar試樣製程………………………………………………5.2.2 蕭特基二極體試樣製程…………………………………………8.2.3 HBT元件製程……………………………………………………10.2.4射極TLM製程……………………………………………………14.2.5基極TLM製程………………………………………………………16.3 BiFET的特性量測…………………………………………………18.3.1 XRD量測及模擬…………………………………………………18.3.2 PL量測…………………………………………………………18.3.3 High resolution SIMS量測…………………………………18.3.4 Hall effect量測………………………………………………19.3.5 蕭特基二極體的電容-電壓量測………………………………21.3.6 HBT元件的電流-電壓特性量測…………………………………22.3.7 TLM的電阻量測…………………………………………………24三章 實驗結果與討論………………………………………………44.1 PHEMT特性…………………………………………………………44.1.1 PHEMT capless結構的XRD量測及及模擬結果…………………44.1.2 PHEMT capless結構的PL量測結果及理論計算………………45.1.3 PHEMT capless的Hall bar試樣量測結果……………………48.1.4 PHEMT capless的蕭特基二極體試樣電容-電壓量測結果……49.1.5 PHEMT結構的high resolution SIMS量測結果………………50.2 HBT特性……………………………………………………………51.2.1 HBT元件的電流-電壓量測結果………………………………51.2.2 TLM的量測結果…………………………………………………52四章 結論……………………………………………………………81考文獻………………………………………………………………821748207 bytesapplication/pdfen-US有機金屬化學沉積法雙載子電晶體場效電晶體片電子密度電子移動率外擴散MOCVDHBTPHEMTBiFETelectron mobilitysheet electron densityout-diffusion結合雙載子及場效電晶體的單石積體結構之成長技術研究Epitaxial technology for the monolithic integration of HBT and PHEMTthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/189152/1/ntu-98-P95943008-1.pdf