楊萬發臺灣大學:環境工程學研究所許智賢Hsu, Chih-HsienChih-HsienHsu2007-11-292018-06-282007-11-292018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/62662皮革製程中主要產生之含鉻固體廢棄物包括廢皮革粉、廢皮屑及廢削邊皮等,在製革過程中添加的鉻鹽大部分殘留於廢皮革中。根據研究顯示,1,000公斤的鹽漬皮僅能產生200公斤的皮革成品,卻會產生高達600公斤的固體廢棄物,其中250公斤為經鞣製的廢棄物。廢皮革中之總鉻含量常高達15,000mg/kg以上,鉻及其化合物之溶出試驗值亦高於5mg/L之標準值,屬於有害事業廢棄物。依據環保署事業廢棄物管制中心之上網申報統計資料,國內廢皮革、廢皮革屑混合物91年之產量約為37,000公噸。若是這些廢棄物能找到妥善的再利用方法,即可成為有價值的副產品,並可大量減少廢棄物的問題。 實驗結果顯示:蒸製前廢皮革粉較蒸製後廢皮革粉所含之鉻較容易萃出。液固比對於萃取效果並無顯著影響。無機酸中以硝酸之萃取效果最好,有機酸中以草酸之萃取效果最好。萃取液濃度越高,鉻溶出比例越高,但若萃取液濃度過高,將會使廢皮革粉完全溶解於萃取液中。萃取時間越長,鉻溶出比例越高,但萃取一段時間之後即可達到最大萃取濃度,萃取時間過長將造成時間上的浪費以及處理效率降低。硝酸萃取液的最大溶出比例為濃度1.75N、萃取溫度40℃、萃取時間6小時之54.35%。草酸萃取液的最大溶出比例為濃度1.5N、萃取時間36小時之81.24%。溫度提高可以減少硝酸萃取液的萃取時間,但若溫度超過45℃、萃取時間超過6小時,廢皮革粉將完全溶解於萃取液中。二次萃取效果最佳之步驟為第一段以0.25N草酸萃取24小時、第二段以0.75N氯化鈉萃取24小時,二段合計之總溶出比例可達到96.82%。以1:1之體積比混合0.25N草酸及1.75N硝酸,在萃取時間48小時下之鉻溶出比例可達到95.47%。若要使200mL之1.25N硝酸萃取液發生沈澱,必須加入20mL以上之15N氫氧化鈉溶液。經過沈澱,可去除萃取液中96.76%的鉻。經本實驗最佳脫鉻效率96.82%處理之廢皮革,其含鉻量約為550 mg/kg左右,若以其製成肥料,添加比例可達到27%。較未脫鉻前僅能添加0.86%來計算,摻配量可提升30倍以上。The major solid wastes generated of leather processing are including leather powders, leather sweeps, and leather shavings. The additive chromate in the leather process still remains in the leather waste. According to study results, one ton of wet salted hides yield only 200 kg of leather but over 600 kg of solid waste, along with about 250 kg of tanned solid waste. The total chromium of leather waste is higher than 15,000 mg/kg, and the TCLP value of Cr is higher than regulated limit of hazardous industrial waste. According to the EPA data in 2002, the amount of leather waste is about 37,000 ton. If we can find some good method to make leather waste transferring to valuable by-products, a lot of problem of waste will be solved. The results of experiment show that the total chromium of leather waste, which wasn’t cooked with high-pressure steam, can be extracted easier. The liquid to solid ratio (L/S) doesn’t have significant effect of extraction efficiency. Nitric acid is the best extracts in inorganic acids, and oxalic acid is the best extracts in organic acids. We can obtain high extraction efficiency when extracts made by high concentration. If the concentration of extracts was too high, leather waste will be completely soluble in extracts and can’t reuse in composting way by solid shape. We can obtain high extraction efficiency when the extraction time was long. The max concentration of extracts will be found when the extraction was lasting for a period of time. It will be a waste of time and lower extraction efficiency when the extraction time was too long. The max extraction efficiency of nitric acid extracts is 54.35% when the concentration is 1.75N and the extraction time is 6hr at 40℃. The max extraction efficiency of oxalic acid extracts is 81.24% when the concentration is 1.5N and the extraction time is 36hr at room temperature. It will spend fewer time when the nitric acid extracts was extracting at high temperature, but leather waste will be completely soluble in extracts when the extraction time more than 6hr and the extraction temperature more than 45℃. The total extraction efficiency of two-step extraction is 96.82%, when the first step is 0.25N oxalic acid extracting for 24hr and the second step is 0.25N sodium chloride extracting for 24hr. The extraction efficiency of the mixed extracts made by 0.25N oxalic acid and 1.75N nitric acid in 1:1 volume ratio is 95.47% when the extraction time is 48hr. The 200mL 1.25N nitric acid extracts will be precipitation when 20mL 15N sodium hydroxide solution was added and it can removal 96.76% of chromium. The total chromium of the leather waste, which was treated by the best dechroming efficiency 96.82% in this experiment, is 550mg/kg. The adding ratio can be 27% when we make compost by leather waste. Comparing with the adding ratio of the leather waste, which wasn’t treated, the number of the adding ratio can enhance 30 times.目錄 摘要 I Abstract III 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 皮革工業之製革程序 3 2.2 我國皮革業廢棄物之清除處理現況 12 2.3 廢皮屑中鉻之含量 14 2.4 廢皮革之資源再利用方式 16 2.4.1 再生為飼料 16 2.4.2 焚化處理 17 2.4.3 酵素水解處理 17 2.4.4 堆肥處理 18 2.5 鉻之物理化學特性 29 第三章 實驗設備與研究方法 30 3.1 實驗設備 30 3.2 實驗所需材料及藥品 31 3.3 分析測定方法 32 3.3.1 樣品基本性質分析 33 3.3.2 鉻之分析 34 3.4 實驗設計 36 3.4.1 毒性溶出試驗方法之影響 37 3.4.2 萃取方式之影響 37 3.4.3 液固比之影響 38 3.4.4 萃取液種類之影響 38 3.4.5 萃取液濃度之影響 38 3.4.6 萃取時間之影響 38 3.4.7 萃取溫度之影響 39 3.4.8 二次萃取之影響 39 3.4.9 複合酸萃取液之影響 39 3.4.10 以鹼中和酸萃取液 39 第四章 結果與討論 41 4.1 樣品基本性質之分析結果 41 4.2 不同萃取條件之溶出效果 42 4.2.1 毒性溶出試驗方法之影響 42 4.2.2 萃取方式之影響 44 4.2.3 液固比之影響 45 4.2.4 萃取液種類之影響 46 4.2.5 萃取液濃度之影響 48 4.2.6 萃取時間之影響 52 4.2.7 萃取溫度之影響 54 4.2.8 二次萃取之影響 58 4.2.9 複合酸萃取液之影響 61 4.2.10 以鹼中和酸萃取液 62 4.3 廢皮革脫鉻處理之效益及成本 65 4.3.1 廢皮革脫鉻處理之效益 65 4.3.2 廢皮革脫鉻處理之成本計算 65 4.3.3 廢皮革再生堆肥之出路探討 67 第五章 結論與建議 69 5.1 結論 69 5.2 建議 70 參考文獻 712323353 bytesapplication/pdfen-US廢皮革鉻鞣酸萃取l eather wastechrome tannedacid extraction method[SDGs]SDG12以酸萃取法去除鉻鞣廢皮革中鉻之研究The Study on the Removal of Chromium in the Chrome Tanned Leather Waste by Acid Extraction Methodthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62662/1/ntu-93-R89541106-1.pdf