2016-04-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/679731摘要:高效能綠電子科技是下一代電子元件發展的目標,除了傳統的矽基系統,三五族系統如 GaAs 為主的異質結構也是場效電晶體之研究重點。利用分子束磊晶,可生長出高品質的三五族半導體與氧化物的異質界面,而此界面之傳輸特性將影響該元件的運作效率。無獨有偶,在綠電子的另一個選項:自旋電子學元件的近期研究中,也發現到金屬與氧化物的界面特性將影響自旋電子的傳輸甚巨。藉由了解導電載子與自旋電子在界面上之傳輸,以及傳輸特性與材料生長條件、膜層選擇等之關連,將有助於改進下一代高效率電子或自旋電子元件的表現。<br> Abstract: Moving toward high performance and energy-efficient era can be considered as one of the most important goals for developing next generation electronic devices. Beyond silicon-based system, the III-V systems such as GaAs-based heterostructures serve as a promising candidate for next generation MOSFET. Through molecular beam epitaxy (MBE), high quality III-V oxide heterojunction (interface) can be realized. Understanding the carrier transport property in the heterostructure, which is strongly related to the growth condition, is the key to achieve ever higher performance MOSFET and/or other electronic devices. Surprisingly, in the field of spintronics, the spin-transport across magnetic heterojunctions will also affect the effective spin transmission efficiency. In this sub-project, we will study the correlation between charge carrier transport and spin transport in various heterostructures as well as the connection between transport properties and materials growth conditions.半導體綠電子氧化物異質介面自旋電子semiconductorgreen electronicsoxideheterojunctionspintronics優勢重點領域拔尖計畫【子計畫 3 發展高效能綠電子科技於氧化物與半導體異質界面之前瞻研究】