陳宜良Chern, I-Liang臺灣大學:數學研究所林仟松Lin, Chian-SongChian-SongLin2010-05-052018-06-282010-05-052018-06-282008U0001-1507200818233400http://ntur.lib.ntu.edu.tw//handle/246246/180559在這篇論文中, 我們研究非等向橢圓耦合界面問題在二維的情形。 目前的方法精準度做到一階。 如果擴散方向與界面方向平行的話, 其結果會更好。In this thesis, we study an extension of the coupling interface method for general elliptic interface problems with anisotropic coefficients in two dimensions. The method proposed here is first order. It is found that when theiffusion direction is aligned with the interface , the result becomes better.口試委員會審定書 (i)謝 (ii)文摘要 (iii)bstract (iv) Introduction (1) Preliminaries (2).1 Overview of Coupling Interface Method [1] (2) Extension of Coupling Interface Method (4) Numerical Experiment (6).1 No Interface Case (7).2 Linear Time of AMG (12).3 CIM for Anisotropic Problem (13).4 Observation on Oscillation (20) Conclusion (23) Appendix. (24).1 Overview of Algebraic Multigrid Method[9] (24).2 Convergence Analysis of Basic Iterative Method (25) Reference (28)application/pdf2103400 bytesapplication/pdfen-US耦合界面問題代數多重網格法非等向不連續係數橢圓界面問題Coupling interface methodAlgebraic multigrid methodAnisotropicDiscontinuous coefficientsElliptic interface problem非等向橢圓耦合界面問題A Coupling Interface Method For Anisotropic Elliptic Problemsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/180559/1/ntu-97-R95221016-1.pdf