劉致為臺灣大學:電子工程學研究所李陳毅Lee, Chen-YiChen-YiLee2007-11-272018-07-102007-11-272018-07-102006http://ntur.lib.ntu.edu.tw//handle/246246/57460本論文中,經由晶圓鍵結技術,我們得以將鍺晶圓和有80奈米二氧化矽覆蓋的矽晶圓進行室溫黏合,結合氫離子佈植技術,於低溫下熱退火。植入的氫離子受溫度影響使鍺晶圓在植入深度處裂開,薄的鍺層因而轉移到二氧化矽上,也就是我們所想要的絕緣層上鍺結構。利用原子力顯微鏡量測鍺的表面,結果顯示熱退火溫度越低,絕緣層上鍺的鍺層會越平滑。同時,低溫熱退火使得佈植的氫離子能更有效地修補在離子佈植時所產生的缺陷。 鍺層因為具有吸收紅外光的能力,使得它成為高速光偵測器絕佳的選擇。本論文中亦有探討絕緣層上鍺-金氧半-光偵測器的特性。實驗中,利用金屬閘極技術來減少暗電流;氧化層則是利用液相沉積法成長,使照光產生的載子能藉由多層缺陷的幫助而穿過氧化層。由0.8μm厚的鍺層所做成的光偵測器在照850奈米的光時有較高的光響應,而1.3μm厚的鍺層所做成的元件則在照1310奈米的光時有較大的光響應。施加應力在元件上時,光電流、光響應以及效率皆有變大。In this thesis, a thin layer of germanium is bonded successfully to another silicon wafer capped with about 80 nm SiO2 by direct hydrophilic bonding and hydrogen-induced layer transfer. Lower bonding temperature as 150oC will result in a smoother surface with roughness of ~6 nm by AFM measurement after H2 blistering. Lower bonding temperatures allow the implanted hydrogen ions to passivate the defects caused by implantation damages more effectively. The ability of germanium to absorb in the near infrared makes it a promising candidate in high-speed photodetector application. Hence, GOI MOS photodetectors are studied in the thesis. The leakage current at inversion bias is reduced by metal gate technique. The gate oxide is deposited by liquid phase deposition which carriers can tunnel through it via the assistance of multiple traps. 0.8-μm-thick Ge detectors have higher responsivity at 850 nm exposure while 1.3-μm-thick Ge detectors have higher responsivity at 1310 nm exposure. With external mechanical biaxial strain, the photo current, the responsivity, and the efficiency of the device are all enhanced.List of Figures VIII List of Tables XII Chapter 1 Introduction 1.1 Motivation 1 1.2 Organization 3 Chapter 2 Wafer Bonding Technology and Layer Transfer 2.1 Introduction 7 2.2 Wafer Bonding 8 2.3 Wet Chemical Activated Bonding 13 2.4 Experiment Procedure 15 2.5 Layer Splitting and Transfer 19 2.5.1 The Mechanisms of the Hydrogen-Induced Exfoliation 19 2.5.2 Hydrogen-Induced Layer Transfer 20 2.6 Summary 22 Chapter 3 Germanium-on-Insulator Substrates Fabrication 3.1 Introduction 25 3.2 Experiment Procedure 26 3.3 Results and Discussions 30 3.3.1 Device Layers Structure 30 3.3.2 Surface Roughness 31 3.3.3 Low Temperature Wafer Bonding 35 3.3.4 Raman Spectroscopy 37 3.4 Summary 40 Chapter 4 Germanium-on-Insulator MOS Photodetector for 850nm, 1310nm, and 1550nm operation 4.1 Introduction 43 4.2 Experiment Process 44 4.2.1 Device Fabrication 44 4.2.2 Liquid Phase Deposition 48 4.3 Current Reduction by Metal Technique 51 4.3.1 Inversion Current Reduction 51 4.3.2 Accumulation Current Mechanisms 52 4.4 Results and Discussions 56 4.4.1 GOI Photodetectors Operated at 850, 1310, 1550nm 56 4.4.2 Photodetector at Different Process Temperatures 64 4.4.3 Photodetectors with Mechanical Strain 65 4.5 Summary 73 Chapter 5 Summary and Future Work 5.1 Summary 76 5.2 Future Work 775652661 bytesapplication/pdfen-US絕緣層上鍺晶圓鍵結氫離子佈植germanium-on-insulatorwafer bondinghydrogen implantation絕緣層上鍺晶圓製程及其元件應用Fabrication of Ge on Insulator and Device Applicationthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/57460/1/ntu-95-R93943135-1.pdf