2020-01-012024-05-13https://scholars.lib.ntu.edu.tw/handle/123456789/653465摘要:在過去數年間,量子科技的發展已趨使量子計算逐漸邁向實用階段。在所有固態平台中,矽基量子位元元件非常具有潛力,主要是因其長自旋去相干特性、可擴展性、與大型積體電路相容、能操作於較高溫度(> 1 K)以及可以低溫CMOS元件整合。對於矽基量子電腦而言,量子點元件為其基本單元,可執行單量子位元之轉動與雙量子位元操作(如CNOT閘極運算),如同傳統CMOS元件,矽基量子點可藉由大型積體電路技術製作,這對於大型量子位元系統而言至關重要。為實現矽基量子位元操作,必須降低溫度方能達成單電子自旋,為了更進一步操控矽基量子點的自旋狀態以進行量子位元運算,必須使用微波技術方能克服自旋上與自旋下兩種狀態之能量差。在本計畫中,我們的目標即是建置進行矽基量子位元之實驗基礎建設,藉由以建置之極低溫設備量測量子點特性,結合微波系統以進行量子位元操控。<br> Abstract: In the past few years, the development of quantum technology has driven quantum computing to become achievable reality from its infancy. Among all solid-state candidates, Si-based quantum bit (qubit) devices are the most promising due to the long spin decoherence, scalability, VLSI compatibility, high operational temperature (> 1 K), and integration capability with cryo-CMOS circuits. For a Si-based quantum computer, quantum dot (QD) devices are the basic units, where a single-qubit rotation and two-qubit operations (e.g. CNOT) are operated. Similar to conventional CMOS devices, Si-based QDs can be fabricated by VLSI technology, which is probably the holy grail for large-scale qubit systems. To realize Si qubit operations, single electron spins must be achieved by lowering the measurement temperature to the cryogenic regime. Furthermore, to manipulate spin states in Si-based QDs for qubit operation, microwave control is needed to match the energy difference between the spin-up and spin-down states. In this project, we aim for the build-up of infrastructure for Si qubit experiment. We will develop the cryogenic measurement setup for QD characteristics and combine with microwave setup for qubit control.量子點量子位元微波互補式金氧半quantum dot (QD)quantum bit (qubit)microwaveCMOS矽基量子計算元件研究計畫