陳逸聰臺灣大學:化學研究所王建惟Wang, Chen-WeiChen-WeiWang2007-11-262018-07-102007-11-262018-07-102006http://ntur.lib.ntu.edu.tw//handle/246246/51996本論文藉由網路型單壁碳奈米管場效應電晶體(single wall carbon nanotubes field effect transistor,SWNT-FET)生物感測器,偵測大腦神經細胞在神經傳導過程中所釋放出來的嗜鉻粒蛋白A,作為細胞的神經活性之指標。   我們藉由奈米機電製程技術來製備網路型SWNT-FET,並從電流-閘極電壓特性圖的分析中,鑑定我們的SWNT-FET為p型半導體傳輸特性。接著,藉由非共價鍵官能性pyrene修飾法將SWNT-FET修飾上嗜鉻粒蛋白A的抗體,使其成為對嗜鉻粒蛋白A靈敏的SWNT-FET生物感測器。在進行到結合神經細胞的實驗之前,我們以市面所購得的嗜鉻粒蛋白A胜肽(158 ~ 457胺基酸)作測試。從其與其抗體間分子辨識的實驗結果中,我們能夠量測到 1 nM的偵測極限。此外,我們從由對電場感應程度不同的元件之實驗結果比較中,推斷出偵測機制是透過化學閘極效應,以及調變穿隧效應機率兩者結合的結果。   更進ㄧ步地我們將實驗拓展至生物系統上。藉由量測不同生理活性的大腦神經細胞在接觸SWNT-FET的過程中所造成的電性變化,我們推斷出電性變化與神經細胞的生理活性有關,可能包含的原因是膜電位與細胞膜的電偶極。接著,在藉由以免疫染色與西方轉自法確定嗜鉻粒蛋白A大量存在於神經細胞之後,我們以麩氨酸活化大腦神經細胞,藉由SWNT-FET即時並選擇性地偵測到大腦神經細胞在神經傳導過程中所釋放出來的嗜鉻粒蛋白A。此結果代表著我們成功地將SWNT-FET生物感測器的技術推廣到了活體神經細胞的神經傳導研究上,我們也相信將來這技術能夠拓展到個別的單隻神經細胞之研究,為了解整個神經細胞網路的神經生理學打開了一扇嶄新的視窗。We investigated the synaptic transmissions among primary cultured embryonic cortical neurons by using network single wall carbon nanotube field effect transistors (NSWNT-FET). We selectively monitored the chromogranin A (CgA) released by neuronal cells during the synaptic transmission process as an index of the neuronal activity. We use microelectronic techniques to fabricate NSWNT-FET devices, and the electrical transport in the NSWNT-FET was characterized by measuring the source-drain current vs. back-gate voltage (I-Vg curves). The results indicated that the NSWNT-FET is a p-type semiconductive device. Before applying this technique to living neuron cells, we conducted the standard molecular recognition experiment of CgAP (CgA peptide, 158~457 AA) and CgA-Ab (chromogranin A antibody) to test the performance of NSWNT-FET and investigate the sensing mechanism. The results showed sensitive electric responses, thus demonstrating the high affinity between CgAP and CgAP-Ab. The sensing mechanism was attributed to both chemical gating effect and thining of Schottky barrier between metal electrode and NSWNTs. In the present result, the detection limit of CgAP was 1 nM.      To verify the feasibility of applying this novel system to detect the CgA secreted from cultured cortical neurons, we used immunochemistry and Western blot to confirm the existence of CgA in neuronal cells. Both result showed CgA was abundant in the whole cell, including soma and neuritis. To extend the detection of CgA to living neuronal cells, we used glutamate to stimulate the neurons and successfully detected the CgA released during the synaptic transmission processes. The result demonstrated that CgA released from the synaptic terminal of neurons can be detected directly with high selectivity and sensitivity by CgA-Ab modified NSWNT-FET. This sensory technique is promising in medical examination and the study of individual neuron cell activity, which should open a new window to understand the neurophysiology in neuronal network.謝誌…………………………………………………………………Ⅰ  中文摘要………………………………………………………………Ⅳ 英文摘要………………………………………………………………Ⅵ 目錄……………………………………………………………………Ⅶ 圖目錄………………………………………………………………ⅩⅠ 第一章、 序論…………………………………………………………1 1-1 前言…………………………………………………………1 1-2 神經傳導……………………………………………………2 1-2.1 神經傳導機制簡介…………………………………………2 1-2.2 電學測量法於神經生理學之應用…………………………5 1-3 一維奈米材料場效應電晶體生物感測器…………………7 1-4 碳奈米管簡介………………………………………………10 1-4.1 碳奈米管之源起與發展……………………………………10 1-4.2 碳奈米管於生物系統之應用………………………………12 1-5 嗜鉻粒蛋白A(Chromogranin A)…………………………13 1-5.1 嗜鉻粒蛋白A簡介…………………………………………13 1-5.2 嗜鉻粒蛋白A用於醫療檢測與神經活性之研究…………14 1-6 研究興趣與目的……………………………………………16 第二章 、 實驗系統與晶片製程…………………………………17 2-1 實驗系統……………………………………………………17 2-1.1 實驗系統概述………………………………………………17 2-1.2 實驗儀器簡介………………………………………………18 2-2 碳奈米管場效應電晶體製程………………………………19 2-2.1 晶片設計概要………………………………………………19 2-2.2 製程技術簡介………………………………………………22 2-2.3 製作流程……………………………………………………25 2-3 微流體通道製備……………………………………………28 2-4 碳奈米管溶液準備 ………………………………………30 第三章、 實驗方法……………………………………………………32 3-1 電晶體電性量測……………………………………………32 3-2 嗜鉻粒蛋白A胜肽與其抗體間分子辨識之研究…………33 3-2.1 研究方法簡介………………………………………………33 3-2.2 實驗流程……………………………………………………37 3-3 神經活性之研究……………………………………………39 3-3.1 研究方法簡介………………………………………………39 3-3.2 大腦神經細胞之培養………………………………………39 3-3.3 西方轉漬與免疫染色法……………………………………43 3-3.4 即時偵測神經細胞釋放之嗜鉻粒蛋白A…………………44 I. 實驗方法簡介……………………………………………44 II. 麩氨酸受體簡介……………………………………………45 III. 實驗流程……………………………………………………46 第四章、 實驗結果與討論……………………………………………47 4-1 碳奈米管電晶體特性分析…………………………………47 4-1.1 引言…………………………………………………………47 4-1.2 基本電性分析………………………………………………49 4-1.3 磁滯效應……………………………………………………55 4-2 嗜鉻粒蛋白A胜肽與其抗體間分子辨識之研究結果……56 4-2.1 引言…………………………………………………………56 4-2.2 偵測原理介紹………………………………………………58 I. 化學閘極效應………………………………………………58 II. 金屬功函數調變效應………………………………………58 III. 電子傳遞……………………………………………………59 IV. 構型改變……………………………………………………60 V. 結語…………………………………………………………61 4-2.3 化學修飾之確認與分析……………………………………61 4-2.4 分子辨識之結果……………………………………………64 4-2.5 偵測原理之探討……………………………………………67 4-3 神經活性之研究結果………………………………………69 4-3.1 引言…………………………………………………………69 4-3.2 免疫染色法之結果…………………………………………71 4-3.3 西方轉漬法之結果…………………………………………75 4-3.4 細胞接觸之影響……………………………………………75 4-3.5 即時偵測神經細胞釋放嗜鉻粒蛋白A……………………84 第五章、 結論…………………………………………………………89 參考文獻………………………………………………………………925972428 bytesapplication/pdfen-US場效應電晶體神經活性神經傳導嗜鉻粒蛋白Afield effect transistorneuronal activitieschromogranin A碳奈米管場效應電晶體用於神經活性之研究Investigation of Neuronal Activities by Carbon Nanotube Field Effect Transistorsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/51996/1/ntu-95-R93223046-1.pdf