2013-01-012024-05-15https://scholars.lib.ntu.edu.tw/handle/123456789/665662摘要:中孔洞材料因為具有高表面積(ca. 1000 m2/g)、可控制的形態(薄膜、奈米粒子等)、表面易修飾官能基(NH2 group、SH group、COOH group等)以及良好的生物相容性等特性,在催化、吸附、分離、合成以及生物醫學方面有很高潛力的應用性。此項深耕計畫重點在於合成新型多功能中孔洞奈米材料(包含氧化矽、氧化鈦、氫氧基磷灰石等),並基於本實驗室過去累積經驗,針對目前人類生活中所面臨的二大問題(癌症治療和再生能源開發),提供新的材料以解決問題。在此三年半的研究計畫中,我們預計利用前面一年半的時間進行材料的合成,在後兩年的時間同時進行生醫和再生能源的應用。 生醫應用上,我們試著解決三個問題。(1)癌症治療:我們將利用田口式實驗設計法合成新的中孔洞氧化鈦奈米粒子做為藥物載體,利用氧化鈦具有光觸媒特性,加上中孔洞所得到的高表面積,得到一種高效率且高專一性的藥物載體。(2)控制釋放:我們將利用中孔洞的特性,對藥物做不同裝載行為(物理吸附、物理嵌入及化學鍵結)來達到藥物的控制釋放行為。(3)生物影像:我們將修飾中孔洞奈米粒子的表面,使其帶有對不同細胞內酵素反應有應答特性的官能基,使其成為一種新型細胞內生物感測系統。 再生能源應用上,我們的目標是希望能夠將木質纖維素轉換成5-羥甲基糠醛(5-HMF),以使用的催化劑分為兩個方向。(1)利用強酸性無機中孔洞氧化物奈米粒子達到一步纖維素到5-HMF的反應。(2)利用酵素嵌入型中孔洞氧化矽奈米材料為催化劑,達到低溫下將纖維素轉成葡萄糖。我們將首先合成出這些催化劑並且調查這兩個不同做法的最佳的反應條件,最後探討不同的催化劑對產率及專一性的影響。 <br> Abstract: Because of their high surface area (around 1000 m2/g), controllable morphology (nanoparticle and thin films), tunable surface functionalities (amino group, thiol group, carboxylic group), and high biocompatibility, mesoporous materials have high potential in many fields including catalysis, adsorption, separation, synthesis, and biomedicine. Based on the experience and capability of our laboratory, this career development project will focus on the synthesis of novel mesoporous materials including mesoporous silica, titania, and hydroxyapatite as new tools for solving two of the biggest problems nowadays: cancer therapy and renewable energy. In this 3.5 years proposal, we plan to synthesis the new mesoporous materials at the first 1.5 years and will apply the obtained materials in the applications of biomedicine and renewable energy at the rest years. In the biomedical applications, we will try to resolve three problems. (1) Cancer therapy: we will design and synthesize new mesoporous titania nanoparticles using Taguchi method as drug carriers. By the combination of photo-catalytic property of titania and high surface area of mesopores, we aim to produce a new drug nanocarrier with high drug-loading and specific targeting capacity. (2) Controlled release: we will use the unique property of mesoporous materials (i.e., physical adsorption, entrapment, and chemical binding) for control of drug loading and release. (3) Bioimaging: we will modify the internal and external surface of mesoporous nanoparticles with different functional groups towards different intracellular enzyme reactions for new types of biosensor systems in living cells. In the renewable energy applications, our goal is to directly convert lignocellulosic biomass to 5-hydroxymethylfurfural (5-HMF). Two strategies will be used based on different catalysts. (1) Strong acidic mesoporous metal oxides nanoparticles for one-pot cellulose-to-5HMF conversion. (2) Enzyme-immobilized mesoporous biocatalysts for cellulose-to-glucose conversion. We will first synthesize the mesoporous catalysts and optimize all reaction conditions in the two systems. We will then study the effects of the synthesized catalysts on the yields and specificity of products.中孔洞奈米粒子再生能源木質纖維素抗癌藥物控制釋放生物影像 。Mesoporous nanoparticlesRenewable energyLignocellulosic biomassControlled release of anticancer drugsBioimaging.學術研究生涯發展計畫-桂冠型研究計畫【多功能中孔洞奈米材料的裝備及在生醫和生質能源上的應用】