蘇志杰臺灣大學:海洋研究所陳以瑛Chen, I-YingI-YingChen2010-05-062018-06-282010-05-062018-06-282008U0001-2907200819433500http://ntur.lib.ntu.edu.tw//handle/246246/181218本研究在台北陽明山區與嘉義民雄鄉同步收集雨水標本,採樣時間自2006年1月至2007年12月為期兩年,共計307個雨水標本。分析項目包括pH值(酸鹼計)、導電度(導電度計)及主要離子成分(離子層析儀),並探討酸沉降之化學特性。 水化學之時空特性顯示,陽明山降雨之酸鹼值加權平均為4.38,水質偏酸,酸雨發生率為94%,呈全面性酸化現象。酸化原因為當地既有物質及火山背景所提供的致酸離子之外,尚有來自中國大陸之長程傳輸貢獻,尤其東北季風盛行時,pH值更低。季節性差異以夏、冬兩季最為明顯,夏季雨水pH值較高,各項離子濃度較低,冬季反之。離子濃度貢獻比依次為Na+>SO42->Cl->Ca2+>Mg2+>NH4+>NO3->K+。硫酸根與硝酸根為主要致酸物質。嘉義地區降雨酸鹼值之加權平均為5.11,水質較北部山區為鹼,酸沉降發生率為41%。高酸鹼度由農產活動及天然鹼性塵土所提供,當地降水品質受自然來源影響多過於人為活動。夏、秋兩季雨水pH值較低,冬季較高。離子濃度貢獻比依次為NH4+>Cl->K+>SO42->Ca2+>Na+>Mg2+>NO3-。海水氯鈉比值分析結果顯示,陽明山樣區降水有氯虧損現象,約佔47%。 降水離子來源,陽明山降水普遍受海鹽影響,其次為當地火山背景、人為活動及境外傳輸;嘉義降水主要受農耕活動影響,其次是塵土或海鹽等。此外,SO42-在各因子間呈中度相關,顯示長程輸送雖在其他強勢因子中並不突顯,但仍相當重要。在沈降量變化方面,陽明山之酸沉降高於嘉義2-6倍,且硫酸根比硝酸根沉降量多,主要是受離子濃度影響,其次為雨量。天氣類型方面,發生酸沉降多屬東北季風、沙塵暴或鋒面系統,降水受境外傳輸影響遠大於當地。 比較其他地區降水,SO42-、NO3-與人為污染相關;Na+、Cl-、Mg2+與海鹽相關;NH4+、K+與農業活動有關;Ca2+、K+、Mg2+則與當地塵土相關;Cl-、SO42-與火山作用相關。Wet-only rainwater samples (N = 307) were collected from January 2006 to December 2007 in the last two years at the Yangmingshan site in Taipei and the rural site in Chiayi. The chemical composition of the rainwater was analyzed for pH, conductivity, and major ions by using the pH meter, conductivity meter and Ion Chromatography, respectively. The analysis results will be used to discuss the chemical characteristics of the acid precipitation at these two experiment sites. The pH value from Yangmingshan experiment site revealed the rainwater is acidic with a volume-weighted mean pH of 4.38. The incidence of acidic deposition is 94% and reveals comprehensively acidification phenomenon. The acidification was caused by the input from local materials and volcanic activities at Tatun volcanoes or the long-range transmissions from the Mainland China. During the northeast monsoon prevailed period, the pH values were lower than other seasons. The seasonal variability of chemical characteristics shows a distinct difference between summer and winter. Despite the higher pH values in the summer, most of the ions were higher in the winter. The concentration of ions follows a general pattern as Na+> SO42-> Cl-> Ca2+> Mg2+> NH4+> NO3-> K+. The SO42- and NO3- are the major acidification factors. Corresponsively, the rainwater samples collected from Chiayi were more alkaline with a volume-weighted mean pH of 5.11. The incidence of acidic deposition is 41%. The higher values of pH were attributed to the neutralization by agricultural activities and natural alkaline local dusts. The quality of rainwater was largely affected by the natural sources than the anthropogenic activities. The seasonal variability of pH values was lower in the summer and autumn, but higher in the winter. The equivalent concentration of components followed the order: NH4+> Cl-> K+> SO42-> Ca2+> Na+> Mg2+> NO3-. Furthermore, the Cl-/Na+ ratios point to the chlorine loss was a universal phenomenon at Yangmingshan experiment sites, about 47%. As for the sources of ions, Yangmingshan is largely influenced by the oceanic source; the local volcanic activities, anthropogenic sources and the long-range transmissions are also playing important roles as ion providers. By contrast, the agricultural activities, natural local dust and sea salt may be more important for Chiayi experiment site. Additionally, the long-range transmissions are the most important source for SO42- at both experiment sites. The deposition fluxes of SO42- and NO3- at Yangmingshan site were 6 and 2-fold higher than Chiayi site, respectively. The concentration of the ions is the major factor affects the deposition fluxes of SO42- and NO3-, and the rainfall plays less important role. According to the weather pattern, most of the acidic deposition occurred during the northeast monsoon and Asian dust storm prevailed season or when the frontal systems paced around Taiwan. It implies that the quality of rainwater is deeply affected by the long-range transmissions than the local inputs. Several source-types of ions have been identified through comparing the results with the observations from other regions. It appears the SO42- and NO3- are related to the anthropogenic pollution; Na+, Cl- and Mg2+ have good correlation with sea salt spray source; NH4+ and K+ are originated from the agricultural activities; Ca2+, K+ and Mg2+ are associated with the local natural dust; and the volcanic degassing process may influence the flux of Cl- and SO42- at Yangmingshan experiment site.口試委員會審定書 i謝 ii要 iiibstract iv一章 緒論 1-1 研究動機 1-2 研究目的 2二章 文獻回顧 3-1 酸沉降的定義與組成 3-2 酸沉降之形成與來源 4-3 降水水質特性 6-4 世界酸沉降之研究 7-5 台灣酸沉降之研究 13三章 研究方法 23-1 採樣區域與方法 23-2 分析項目與方法 24-3 儀器分析 24-4 水質分析之品保品管 26-4-1 檢量線之配置及確認 26-4-2 方法偵測極限及品質分析 27-4-3 陰陽離子之平衡關係 28四章 結果與討論 44-1 雨水化學特性探討 44-2 氯損失現象 45-3 時間趨勢變化 47-4 降水離子來源與天氣類型 48-5 酸沉降量 51-6 與各地降水化學比較 54五章 結論 79考文獻 81錄 88 目 錄2-1 前驅物質在大氣中形成酸沉降之循環過程 212-2 全球降水pH值之空間分佈 212-3 美國地區酸雨概況 223-3 陽明山採樣站之雨水收集桶及自動氣象站 343-4 本研究水樣分析流程 343-5 離子層析儀(DIONEX DX-120)主機外型結構 353-6 離子層析儀主機內部結構 363-7 雨水標本的圖譜 373-8 離子層析儀之系統示意圖 373-9 陰離子標準品Std 1~5分析圖譜 383-10 陰離子標準品檢量線 393-11 陽離子標準品Std 1~5分析圖譜 403-12 陽離子標準品檢量線 413-13 氯離子重覆樣品分析品管圖 423-14 硝酸根離子重覆樣品分析品管圖 423-15 硫酸根離子重覆樣品分析品管圖 423-16 銨根離子重覆樣品分析品管圖 433-17 鈣離子重覆樣品分析品管圖 433-18 鈉離子重覆樣品分析品管圖 434-1 陽明山雨水pH值之頻率分布 594-2 嘉義雨水pH值之頻率分布 594-3 陰、陽離子之當量濃度總和比 604-4 降水中離子濃度貢獻比 614-5 氯離子於受污染的海岸邊界之晝夜變化 624-6 陽明山降水之酸鹼值與雨量之時間序列分布 634-7 陽明山降水pH值與雨量相關圖 634-8 嘉義降水之酸鹼值與雨量之時間序列分布 644-9 嘉義降水pH值與雨量相關圖 644-10 陽明山和嘉義之每月降雨量分布 654-11 陽明山和嘉義之月平均pH值(雨量加權) 654-12 陽明山雨水酸鹼值及離子當量濃度之月平均 664-13 嘉義雨水酸鹼值及離子當量濃度之月平均 674-14 陽明山與嘉義雨水酸鹼值之季變化 684-15 陽明山雨水酸鹼值與降水量之季變化 684-16 嘉義雨水酸鹼值與降水量之季變化 684-17 陽明山雨水離子濃度之季變化 694-18 嘉義雨水離子濃度之季變化 704-19 95.2.12 陽明山測站氣流模擬軌跡圖 714-20 95.2.12 地面天氣圖 714-21 95.3.19 陽明山測站氣流模擬軌跡圖 724-22 95.3.19 地面天氣圖 724-23 95.8.10 嘉義測站氣流模擬軌跡圖 734-24 95.8.10 天氣地面圖 734-25 95.7.8嘉義測站氣流模擬軌跡圖 744-26 95.7.8 天氣地面圖 744-27 95.8.10 全台累積雨量圖 754-28 95.7.8 全台累積雨量圖 754-29 硫酸根沉降量於兩個樣區之比較 764-30 硝酸根沉降量於兩個樣區之比較 764-31 陽明山酸沉降之月變化 774-33 陽明山酸沉降與離子濃度變化 774-35 陽明山酸沉降和降雨量之月變化 784-36 嘉義酸沉降和降雨量之月變化 78 目 錄2-1 歐洲地區酸沉降概況 162-2 亞洲地區酸沉降概況 172-3 台灣地區酸沉降概況 203-1 不同陰離子標準樣品 303-2 不同陽離子標準樣品 303-3 各陰陽離子重覆分析品管之結果 314-1 所有樣品pH值最低前十名 554-2 研究期間侵台颱風資訊 554-3 雨水中陰陽離子比率 564-4 陽明山雨水化學成分之相關矩陣 564-5 嘉義雨水化學成分之相關矩陣 574-6 陽明山與嘉義降水之總雨量、離子濃度、沉降通量 574-7 本研究區與各地降水化學性質之比較 58 錄錄1 台北陽明山區降水化學成分 88錄2 嘉義鄉間降水化學成分 91錄3 時事新聞 97錄4 陽明山區每週降水中各離子之沈降通量之計算結果 99錄5 嘉義鄉間各降水事件中各離子沈降通量之計算結果 104application/pdf4118037 bytesapplication/pdfen-US酸沉降陽明山嘉義離子成分acid precipitationYangmingshanChiayiion components台北陽明山區與嘉義鄉間酸沉降之化學特性探討Chemical characteristics of acid precipitationt Yangmingshan in Taipei and the rural site in Chiayithesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/181218/1/ntu-97-R95241315-1.pdf