2014-10-012024-05-14https://scholars.lib.ntu.edu.tw/handle/123456789/659539摘要:醫學科技日新月異,加上表面改質技術的開發,生醫植入物的功能與效用從以機械性質為主的需求,漸漸提升至同時具有生物積極性的方面發展。骨科鋼板手術最大併發症是發生感染造成骨髓炎。骨髓炎之產生有二種途徑;其一是細菌經由血液帶至骨折處,其二是細菌附著於鋼板上或鋼板周圍血栓(thrombus)處就地繁殖。途徑一可以藉由抗生素加以殺菌,途徑二依據人體的滅菌殺菌機制,包括白血球吞噬細菌及抗生素使用,都無法完全有效的殺死這些附著在鋼板上的細菌。解決方法為改良鋼板表面性質使其具有抗菌性及降低細菌之貼附及滋生及菌膜之形成與散播。本計劃研究重點是將鈦合金鋼板做表面改質結合抗菌生物分子(抗菌胜肽,(antimicrobial peptides, AMP) ) 或氯己定(Chlorhexidine, CHX) 使其具有抗菌性功能,期待藉此方式能阻斷細菌附著在鋼板上形成菌膜而侵入人體的途徑,並降低骨髓炎產生的機會。本研究團隊於功能性聚對二甲苯 (functionalized parylene) 鍍膜的發展已有相當成就,目前已發展出數十種具有不同官能基之聚對二甲苯鍍膜技術,利用不同製程條件來控制官能基與待結合物質形成共價性鍵結,使生物分子依照比例而固定,如聚合物、抗菌藥物、胜肽蛋白分子等等,讓改質後的材料表面可以具備各種生物分子的特性。本計畫預計以二年時間完成下列二階段之研究工作:一、研究重點將利用化學氣相沉積技術製備具官能基之聚對二甲苯鍍膜,並探討此功能性鍍膜於鈦合金鋼板表面的穩定性、黏附力。測試適合之官能基聚對二甲苯鍍膜(functional parylene) 來鍵結固定抗菌生物分子或氯己定,再透過各種物理化學分析包括SEM,AFM,FTIR,Raman spectroscopy,XPS 與 QCM 等方法,再以生物方法測試此抗菌改質技術塗層之抗菌效果試包括:死菌/活菌之螢光測試、生物膜(Biofilm) 生長週期之抗菌測試、分解效率、細胞毒性測試等方法,先驗證第一年鍵結抗菌生物分子或氯己定的穩定性、生物相容性與抗菌性,再調整最佳化之製程條件。二、研究重點為臨床前動物實驗,利用活體測試具抗菌鍍膜之鈦合金鋼板於生物體內的有效性及生物相容性,藉由植入大鼠與兔子之動物實驗做評估,來驗證第二年以量化製程條件所造之抗菌鈦合金鋼板於活體之生物穩定性與功效性。本研究利用具合適官能基之聚對二甲苯鍍膜技術對鈦合金鋼板進行抗菌功能改質,賦予此類骨醫材植入後需要的重要特性-抗菌與殺菌性,而透過此一功能改質技術於防止術後感染的實際應用,將可嘗試解決一般抗生素不良反應的發生,具有材料前瞻性與共通性,此研發成果將涵蓋材料與生醫等科技領域,預期此項技術若能順利商品化,將可提升本土醫材產業的國際競爭力。<br> Abstract: Titanium plates were used widely in the treatment of human bone fracture for recent ten years. The most serious complication in this plating procedure is infection and finally leaded to osteomyelitis. There are two major routes for invasion of bacteria. The first route is through blood stream. The bacteria invaded the human body everywhere even though a small wound. Following the blood stream, they seeded to the fracture site. The second route is through the metal implant itself. The bacteria will attach on the surface of metal implant and proliferate in situ. If the bacteria invaded the human body by blood steam, we can use antibiotics to kill them. But if the bacteria invaded by metal implant, the leucocytes cannot kill these bacteria due to the metal surface is the place that the circulation system cannot reach. And the antibiotics also lose effect due to the same reason. In this proposal, we try to develop the new material and technique to improve this situation.In this study, the titanium plate surface are modified to coat the antibacterial substances, such as antimicrobial peptide (AMP) and chlorhexidine (CHX). Moreover, we will expect the coating film to kill the bacteria to prevent the biofilm formation. This project intended to be two years to complete related research work. Towards this goal, functional parylene coatings prepared by chemical vapor deposition (CVD) are exceptional candidates for the coating of such implant devices due to the straightforward synthesis process to install functionalities on parylenes; and excellent biocompatibility of parylenes which has gained approval by administrative agencies (e.g., the U.S. Food and Drug Administration (FDA) for several medical implants. We intend to achieve the following specific aims in this proposed research: (i) the development of multifunctional parylene coating via chemical vapor deposition (CVD) polymerization process, and the optimization of CVD conditions. In addition, specific conjugations for the immobilization of AMP and CHX molecules on the coating surface will be tested, and the stability of the immobilized AMP and CHX will be characterized by using a combination of physical and chemical analysis tools including SEM, AFM, XPS, FTIR, and XRD. (ii) the important biological assessments including biofilm formation test (anti-bacterial activity), bactericidal test, cytotoxicity, in vitro stability of the anti-bacterial coatings and hemolysis test. And also in vivo animal safety will be tested to confirm the antibacterial activity after surgery.The outcome of this study will support future studies in infection-related medical implants and the development of more advanced biomaterials. We foresee the practical use of these multifunctional coatings in the regulation of cell behavior, implant biomedical devices, and the development of advanced biological assays and scaffolds for regenerative medicine.Biomimetic Antibacterial Modified Parylene Coatings on Implantable Bone Plate (I)