鍾立來臺灣大學:土木工程學研究所張明禮Chang, Ming-LiMing-LiChang2010-06-302018-07-092010-06-302018-07-092009U0001-1507200921562200http://ntur.lib.ntu.edu.tw//handle/246246/187735在各國的重大災害性地震中,除了建築物損壞,不亞於建築物重要性的自來水系統往往被人們忽略。阪神大地震為例,自來水系統總損失金額相當驚人,約290億日圓,其中管線的損失金額就佔自來水系統總損失金額一半以上,由此知管線的重要性。自來水系統分為蓄水、取水、導水、淨水、送水及配水設施等六大項,自來水系統內設施種類繁多,本文中著重於地下管線之設計方法,探討都市中常見的地下管線,針對送水及配水設施部分作探討。藉由國家地震工程研究中心對建築物做初步評估的方法來對地下管線做評估,將設計地震力之地下管線需求與該地下管線的容量做比較,若需求大於容量則不安全,相反地,當容量大於需求則安全。地下管線構造可分連續管構造、分段管構造,地下管線破壞模式可分波傳模式、液化模式、斷層模式,且地下管線的需求有管體應力、管體應變、接頭伸縮量、接頭撓曲角。因此,首先瞭解美國與日本的自來水地下管線設計概念與原理,再將部分設計參數本土化,如最大地表速度等,使之更適合台灣使用。藉由美國與日本對自來水地下管線的設計方法搭配本土化參數作分析,分析475年、2500年回歸期設計地震之連續管構造與分段管構造對於不同破壞模式的需求。了解破壞行為,進而對地下管線做出最適當的設計需求。由計算例可以發現地質資料的重要性,此影響地下管線計算需求極深,如標準貫入試驗N值、地盤種類等。倘若能獲得該工址處詳細的地質資料,再加上美日經驗必能對當地計算出最適合的需求,將此需求與容量做比較,對當地做耐震評估。最後期許建立屬於台灣適用的自來水系統評估方法,以達到最終目的,對自來水系統作耐震評估,確保國人生命安全。From the various earthquake disasters, besides the building damage, water supply system may be neglected by the people. Those facilities and pipelines of water supply system are often damaged under earthquake. The buried pipes of service pipe line are investigated in this paper. The seismic demand of buried pipe under earthquake is compared with the capacity of buried pipe. If the seismic capacity is greater than the seismic demand that means the strength of buried pipe is enough under seismic excitation.The structure of buried pipe can be generalized to two different types. One is continuous pipe, and the other is segmented pipe. The behavior of two different structure of pipe is studied. The welded joint of continuous pipe possesses significant strength and stiffness to the pipe barrel. The joint of segmented pipe has low strength and stiffness relative to the pipe barrel.The weak joint almost absorb all deformation which is made by ground excitation. The buried pipe could be damaged by three modes which are wave mode, liquefied mode and fault crossing mode.After understanding about the structure and destruction of buried pipe, the two manuals of U.S.A and Japanese are referenced. Two different manuals can lead us to calculate the buried pipe’s seismic demand in 475 and 2500 years return period.After those investigations, the results show that the geological conditions are very important. The seismic demand of buried pipe can be studied better if more detail of geological conditions can be obtained. Finally, the prospect is buildup a seismic evaluation for seismic demand of buried pipe to make sure the Lifeline is secure.中文摘要...........................................i文摘要...........................................ii目錄.............................................v目錄.............................................vii號說明...........................................ix一章 緒論.......................................1.1. 研究動機...................................1.2. 研究目的...................................1.3. 文獻回顧...................................2.4. 分析方法...................................6.5. 文章架構...................................7二章 美國自來水管線之耐震設計手冊...............9.1. 地震參數...................................10.1.1. 地盤分類...................................10.1.2. 地盤放大係數...............................10.1.3. 設計反應譜.................................11.1.4. 最大地表速度與最大地表位移.................12.2. 波傳模式...................................14.2.1. 連續管構造之需求...........................14.2.2. 分段管構造之需求...........................16.2.3. 連續管構造接頭與分段管構造接頭之容量考量...17.3. 液化模式...................................18.3.1. 連續管構造之需求...........................19.3.1.1.於管軸平行向之位移場.......................19.3.1.2.於管軸垂直向之位移場.......................20.3.2. 分段管構造之需求...........................21.3.2.1.於管軸平行向之位移場.......................21.3.2.2.於管軸垂直向之位移場.......................21.4. 斷層模式...................................22.4.1. 連續管構造之需求...........................23.4.2. 分段管構造之需求...........................23三章 日本自來水設施耐震工法指南與解說...........36.1. 地質參數與地震參數.........................36.1.1. 最大地表速度(PGV)..........................37.1.2. 地盤表層的自然週期與調和平均波長...........39.1.3. 地盤變位與地盤應變.........................40.1.4. 傳遞係數與地盤每單位長度之剛性係數.........41.2. 475年回歸期設計地震下之波傳需求............42.2.1. 連續管構造.................................43.2.2. 分段管構造.................................43.3. 2500年迴歸期地震下之波傳需求...............46.3.1. 連續管構造.................................46.3.2. 分段管構造.................................48四章 接頭與管體之容量...........................58.1. 連續管構造之容量...........................58.1.1. 管體應力與應變容量.........................58.2. 分段管構造之容量...........................59.2.1. 管體應力與應變容量.........................60.2.2. 接頭部位之拉拔力容量.......................60.2.3. 接頭部位之伸縮量容量.......................61.2.4. 接頭部位之撓曲角容量.......................62五章 計算例.....................................79.1. 給定分析題目...............................79.2. 連續管構造之需求與容量.....................80.2.1. 美國手冊計算...............................80.2.2. 日本手冊計算...............................85.3. 分段管構造之需求與容量.....................88.3.1. 美國手冊計算...............................89.3.2. 日本手冊計算...............................92六章 結論與未來展望.............................100.1. 結論.......................................100.2. 未來展望...................................100錄一 液化潛能指數................................102錄二 推導日本水道協會之應力與應變表示式..........113錄三 計算例之相關參數詳細計算....................116考文獻...........................................1211881982 bytesapplication/pdfen-US自來水系統地下管線接頭需求容量耐震評估water supply systempipelinejointdemandcapacityseismic estimate[SDGs]SDG11地下管線耐震需求及容量之探討Seismic Capacity and Demand of Buried Pipethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187735/1/ntu-98-R96521243-1.pdf