黃漢邦臺灣大學:機械工程學研究所楊家瑋Yang, Jai-WeiJai-WeiYang2007-11-282018-06-282007-11-282018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/61602本文之主要目的,是建立一套高性能觸覺感測系統,用於力量分佈之監測。此外並以Tension Spline Algorithm來完成人工義肢指尖之軌跡規劃,增加抓握之能力,並搭配觸覺感測系統做抓握時力量之控制。 在觸覺感測系統發展方面,主要採用感應靈敏度高的導電橡膠與撓性電路版結合,並藉以多聚合物加以固定,此外並發展適用於此陣列式壓組感應器之硬體及韌體,最後亦設計一個人性化的人機圖形監控介面,透過圖形介面,使用者可隨時掌握力量的分佈情形。 在軌跡規劃方面,引入了Tension Spline Algorithm,藉以可調式因素,達到多種軌跡規劃的目標,並結合位置-力量控制,達到人工義肢之抓握規劃。此外提出Tension Spline Alforithm於影像處理方面之應用的想法,以期得到更好的監視畫面。In this thesis, we develop a tactile sensor system with high performance. The tactile sensor is integrated into the fingertip of prosthetic hand (NTU-Hand IV) to monitor the force distribution. To enhance the grasping ability, we apply the Tension Spline Algorithm to trajectory generation of NTU-Hand IV’s fingertip. Also, the force control of grasping is implemented with the tactile sensor system. In the development of the tactile sensor system, we use polymer layer to combine the high sensitive pressure-conductive rubber with thin-flexible printed-circuit board. Meanwhile, the hardware-firmware system and the graphical user interface are developed to monitor resistive-array sensor and handle the force distribution. In trajectory generation, the Tension Spline Algorithm is integrated into multi-trajectory generation by adjusting of tension factor, and the position-force controller is used to implement the grasping planning for NTU-Hand IV. Besides, that Tension Spline Algorithm applied to the image processing domain is also proposed to gain better force distribution monitor.Table of Contents List of Figures……………………… ……………………………………………v List of Tables………………………… ……………………………………………vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Relevant Knowledge 2 1.2.1 Literature Survey of Tactile sensing Sensor 2 1.2.2 Grasping Planning in Multi-Finger Robot Hand 13 1.3 NTU-Hand IV 15 1.4 Thesis Organization 16 1.5 Contributions 17 Chapter 2 Tactile Sensor System Design 19 2.1 Choice of Sensing Materials 19 2.2 Sensing Principle 25 2.3 Sensor Structure and Construction 27 2.3.1 The Concept of Sensor Design 27 2.3.2 Sensor Structure 31 2.3.3 Flexible Printed Circuit Electrode Sheet Design 33 2.3.4 Tactile Sensor Device Assembly 40 2.4 Sensor Scanning Electronics 41 2.4.1 Scanning Method 41 2.4.2 Implement the Scanning Electronics 44 2.5 Image Processing after Sensor Sensing 45 2.5.1 The Major Defect of Sensing Display 45 2.5.2 Different Image Interpolation Method 45 2.6 Slip Detection Algorithm 53 2.6.1 Center of Force Distribution 53 2.7 Integration of Graphical User Interface 57 Chapter 3 Grasping Integration of NTU-Hand IV 59 3.1 Grasping Planning of NTU-Hand IV with Tactile Sensing Technique 59 3.1.1 Overview of NTU-Hand IV Grasping Process 60 3.1.2 Assembly of NTU-Hand IV and Tactile Sensor 66 3.2 The Kinematics of NTU-Hand IV 67 3.2.1 Direct Kinematics of NTU-Hand IV 67 3.2.2 Inverse Kinematics of NTU-Hand IV 69 3.3 Cubic Spline and Tension Spline Algorithm 71 3.3.1 Using Cubic Spline for Generating Joint Trajectory 71 3.3.2 Using Modified Cubic Spline for Generating Joint Trajectory 76 3.3.3 Using Tension Spline Algorithm for Generating Joint Trajectory 77 3.3.4 Cubic Spline and Tension Spline Comparison 82 3.4 Trajectory Generation 83 3.4.1 Trajectory Planning of NTU-Hand IV by Kinematic 85 3.4.2 Joint Variable Trajectory Planning by Inverse Kinematic 87 3.4.3 Renovated Workspace of NTU-Hand IV 92 3.5 Coordinated Control Strategy for NTU-Hand IV 93 3.5.1 Force Control in Grasping Process 94 Chapter 4 Analysis and Experiments 98 4.1 Sensor Analysis 98 4.2 Experiments and Applications 99 4.2.1 Force Sensing Experiments 99 4.2.2 Applications 103 4.3 Grasp Experiments 104 Chapter 5 Conclusions 108 5.1 Conclusions 108 5.2 Future Works 109 References ………………………………………………………………………...1106396478 bytesapplication/pdfen-US觸覺感測器Tactile SensorTension Spline觸覺感測系統之發展與NTU-Hand IV抓取整合Development of Tactile Sensor System and Grasping Integration of NTU-Hand IVthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61602/1/ntu-93-R91522815-1.pdf