指導教授:陳秋麟臺灣大學:電子工程學研究所張維辰Chang, Wei-ChenWei-ChenChang2014-11-302018-07-102014-11-302018-07-102014http://ntur.lib.ntu.edu.tw//handle/246246/263926本論文提出一個超音波換能器能量採集介面電路,此電路適用於機械波無線電能傳輸系統的接收端。超音波換能器由壓電材料組成,利用壓電效應使電能與機械能互相轉換。不過受限於壓電材料的電學特性,傳統能量採集方法效率不佳,且效率受負載端影響。 本論文利用同步擷取電荷方法,設計一個能量採集介面電路與控制電路。此電路開關的時刻與超音波換能器電壓振盪峰值同步,每一次開關的動作,可以擷取所有接收端超音波換能器內的能量。控制電路偵測超音波換能器的電壓訊號,並且控制同步擷取電荷電路開關的時刻。理論分析使用同步擷取電荷方法採集效率是傳統方法最大採集效率的四倍。最後實驗結果顯示,使用同步擷取電荷方法最大採集效率約是傳統方法最大採集效率的兩倍。This thesis presents an ultrasonic transducer energy harvester interface circuit. This circuit can apply to the receiver of wireless power transmitter system with mechanical wave. The ultrasonic transducer is made of piezoelectric material, which can convert between electrical and mechanical energy. However, the performance of conventional energy harvesters are limited by the electrical characteristic of the piezoelectric, which leads to low efficiency. In addition, the harvested power of it will be affected by the load variation. This thesis utilizes the synchronized electrical charge extraction technique to design and implement an energy harvester interface circuit. The switching of the circuit is synchronous with the peak of the vibration from the ultrasonic transducer. Once the switching is closed, the circuit extracts the energy stored in the ultrasonic transducer. The control circuit detects the voltage of the ultrasonic transducer and controls the instance and duration of the switching. The synchronized electrical charge extraction method increases the harvested power of by 400% in theoretical analysis. Finally, the experiment result shows that the synchronized electrical charge extraction method increases the harvested power by 200%.誌謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第一章:緒論 1 1.1研究背景 1 1.1.1無線電能傳輸 1 1.1.2壓電材料 1 1.1.3 介面電路 2 1.2研究動機 2 1.3論文架構 3 第二章:壓電材料基本原理與應用 4 2.1 壓電效應 4 2.1.1壓電效應原理 4 2.1.2壓電參數 5 2.1.3壓電材料種類 6 2.2壓電晶體等效電路與模型 7 2.2.1BVD模型 7 2.2.2阻抗分析 8 2.2.3變壓器模型 8 2.3超音波換能器特性總結 11 第三章:超音波換能器能量採集電路 12 3.1能量採集電路架構 12 3.2 傳統標準介面電路 13 3.2.1純阻抗匹配 13 3.2.2標準介面電路 13 3.2.3運作過程 14 3.2.4缺失討論 16 3.3同步擷取電荷電路 17 3.3.1方法構思 17 3.3.2電路模型 17 3.3.3運作特性 18 3.3.4電路實現 19 3.3.5電路操作 20 3.3.6採集能量分析 21 3.4切換式轉換器性質 22 3.4.1返馳式轉換器 22 3.4.2開關導通 23 3.4.3開關截止 23 3.5設計方法與模擬結果 25 3.5.1設計參數與模擬分析 25 3.5.2模擬電路運作 26 3.5.3模擬負載改變 28 3.6能量採集電路總結 30 第四章:控制電路 32 4.1控制電路架構 32 4.2電壓隨耦器(Voltage Follower) 33 4.3 RC延遲電路 34 4.4 重置訊號與D正反器 35 4.4.1重置訊號 35 4.4.2方法構思 35 4.4.3D型正反器 36 4.4.4輸出驅動級 37 4.5控制電路總結 38 第五章:實驗量測與結果討論 39 5.1實驗環境與器材 39 5.2實驗數據與分析 41 5.2.1開路波形 41 5.2.2控制電路量測 42 5.2.3雜散電容跨壓與僑式整流器輸出電壓量測 43 5.2.4轉換器電感電流量測 44 5.2.5負載阻抗值改變與輸出功率影響 45 5.2.6負載電壓改變與輸出功率影響 46 5.2.7標準介面電路波型實驗 47 5.2.8負載電壓改變時同步擷取電荷電路與標準介面電路比較 48 5.3非理想效應分析與討論 49 5.3.1開關損耗 49 5.3.2二次側環振盪損耗 50 5.3.3二極體導通時能量損耗 50 5.3.4開關導通與峰值時刻的誤差與導通時間長度 51 5.3.5考慮寄生電容模擬結果 52 5.4實驗總結 53 第六章:結論與展望 54 6.1結論 54 6.2未來展望 55 參考文獻 563758127 bytesapplication/pdf論文使用權限:不同意授權無線充電能量採集超音波換能器壓電效應同步擷取電荷具機械波無線充電功能之超音波換能器能量採集電路設計與實作Design and Implementation of an Ultrasonic Transducer Energy Harvester Circuit with Mechanical Wave Wireless Chargingthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/263926/1/ntu-103-R01943009-1.pdf