理學院: 數學研究所指導教授: 李秋坤李治廣Lee, Chih-KuangChih-KuangLee2017-03-062018-06-282017-03-062018-06-282016http://ntur.lib.ntu.edu.tw//handle/246246/276895令 R 是一個質環,Q_ml (R) 為其左極大商環,滿足 char R = 2 與 dim_C RC=4。令 δ∶ R→ Q_ml (R) 是一個李導算。則我們證明對每個 x∈R,δ(x)=d(x)+ϕ(x)+W(x)+ν(x) 其中 d∶ R→Q_ml (R) 是一個導算,ϕ∶ R→Q_ml (R) 是一個特殊形式的李導算,W∶ R→Q_ml (R) 是一個特殊形式的弱李導算,ν∶ R→C 是一個加性函數並滿足一個特別的關係式。Let R be a prime ring with extended centroid C and maximal left ring of quotients Q_ml (R). Let δ∶ R→ Q_ml (R) be a Lie derivation. Suppose that charR=2 and dim_C RC=4. It is proved that δ(x)=d(x)+ϕ(x)+W(x)+ν(x) for all x∈R, where d∶ R→Q_ml (R) is a derivation, ϕ∶ R→Q_ml (R) is a Lie derivation of a special form, W∶ R→Q_ml (R) is a weak Lie derivation of a special form, and ν∶ R→C is an additive map satisfying a specific relation.1355033 bytesapplication/pdf論文公開時間: 2016/7/26論文使用權限: 同意有償授權(權利金給回饋學校)質環導算李導算弱李導算左極大商環Pring ringDerivationLie derivationWeak Lie DerivationMaximal left ring of quotients質環上的李導算Lie Derivations of Prime Ringsthesis10.6342/NTU201601070http://ntur.lib.ntu.edu.tw/bitstream/246246/276895/1/ntu-105-R02221013-1.pdf