2009-08-012024-05-15https://scholars.lib.ntu.edu.tw/handle/123456789/665120摘要:在高功率密度的應用上,超高電容器是一項引人注目的元件。當其與二次電池結合應用時,提供了更多的用途選擇及更高的使用效率。超高電容器在儲電機制中,可分為電雙層電容(electric double layer capacitance)及偽電容(pseudocapacitance)。偽電容器的充放電機制是類似於電池中的法拉第反應,但其電化學行為卻是類似電容。偽電容器於每單位電極面積上,所產生的電容量是電雙層電容器的10至100倍。雖然有許多氧化物可做為偽電容器的材料,但其在超高電容器的市場中佔有率仍然是非常少。很明顯地,在這些氧化物能被商業化應用前,仍有許多問題需要被解決。為了能將偽電容器應用於高效能超高容器市場上,本研究團隊深信了解這些材料的基礎性質及本質上的問題是必須的。本研究計劃主要探討下列之議題: (1) 完成對於氧化錳電容器其電容衰退機制的探討,並預防於電動車與太陽能儲能系統應用,於高溫下操作時電容的衰退。 (2) 發展膠態高分子電解質,並可應用於以含錳元素之氧化物為基本組成的超高電容器,例如:氧化錳(MnO2nH2O) 及錳鐵氧化物(MnFe2O4)。 (3) 發展與鋰電池結合的混成式超高電容器(hybrid supercapacitor)。 具體的研究主題如下所述: 第一年 1. 完成氧化錳電容於高電位及低電位操作範圍內,其衰退的機制。 2. 完成探討高分子作為膠態電解質時, 氧化錳電容明顯增益的機制。 3. 完成具備高電容之氧化物-高分子的複合電極的合成。 4. 合成並最適化擁有奈米尺寸的鋰錳氧化物(LiMn2O4),以作為於混成式超高電容器中的正極材料。 5. 以鋰錳氧化物(LiMn2O4)及活性碳所組成的混成式超高電容器為模型系統,完成探討電解質對元件效能影響的研究。 <br> Abstract: Supercapacitor (SC) is an attractive device for high power-density applications. When working together with secondary batteries, it provides additional versatility and efficiency in the management of the portable power sources. Pseudocapacitance involves faradaic reactions but behaves like a capacitor, rather than a galvanic cell. Pseudocapacitance can be 10 to 100 times greater than the electric double-layer capacitance per unit true area of electrode material. In spite of many well documented pseudocapacitve oxide materials, their share in the commercial supercapacitor market remains very small. Apparently there remain many obstacles to overcome before they can be commercially viable. We have been believing that it is necessary to seriously look into the fundamental issues to these obstacles in order to realize the commercial applications of high-performance supercapactiros based on the pseudocapacitve materials. This research proposal plans to focus on the following research studies, including (1) complete understanding of the capacitance fading mechanism(s) of MnO2nH2O electrode and prevention of the fading for high-temperature operation, (2) development of polymeric gel electrolytes for Mn-based supercapacitors, including MnO2nH2O and MnFe2O4 ones, and (3) development of hybrid supercapacitors based on Li-ion containing electrolytes. Specific research topics are: (First year) 1. complete the study of fading mechanisms of MnO2nH2O for the low- and high-potential ranges, respectively; 2. complete the study of capacitance-enhancing mechanism(s) using the PAKK as a model system; 3. synthesis of oxide-polyelectroyte composite electrode; 4. synthesis and optimization of nano-sized LiMn2O4 cathode materials; 5. complete the study on the electrolyte effect on the performance of hybrid supercapacitor using LiMn2O4-activated C as a model system.超高電容器電化學電容器氧化錳不對稱電化學電容器supercapacitorelectrochemical capacitorMnO2asymmetric capacitor高性能超高電容器之研發