汪重光Wang, Chorng-Kuang臺灣大學:電子工程學研究所褚坤達Chu, Kun-DaKun-DaChu2010-07-142018-07-102010-07-142018-07-102008U0001-1809200804504800http://ntur.lib.ntu.edu.tw//handle/246246/189084新的感測器技術使得被動式毫米波影像能夠以視頻的速率產生,它同時有著霧、煙和雲中等可見度較低的情況下,仍然能夠成像的能力。近年來,很多操在W 頻帶的關鍵電路使用CMOS 的製程,證明了CMOS 在W 頻帶的操作能。由於低成本、低功率以及高度積體化的需求,本論文提出使用0.13-μm CMOSV頻帶低雜訊放大器以及使用65nm CMOS 的W頻帶低雜訊放大器和接收機。頻帶的低雜訊放大器是使用0.13-μm CMOS 製作,採用gm 提升以及電流使用的技巧,在相同的增益要求下,達到較好的雜訊效能以及較小的功率消。量測到的峰值電壓增益在54GHz 為20.4dB,不包含balun 及open-dran 的損。量測到的平均noise figure 為9dB,最小值為7dB 在59GHz。IIP3 是-15dBm,心的面積是0.4 x 0.37 mm2,消耗7.2mW,在供應電壓為1.2V。使用同樣電流使用技巧的W 頻帶低雜訊放大器,是使用65nm CMOS 設計。量測到的S21103GHz 是11dB,noise figure 是10dB。IIP3 是-14dBm,面積是0.17 x 0.38 mm2,耗25mW,在供應電壓為1.5V。頻帶的接收機是設計在65nm CMOS,供應電壓為1V。這個高度積體化接收器是採用超外差的架構,提供被動式毫米波影像及資料傳輸的功能。所提的倍頻器是使用注入鎖定的振盪器,操作在電壓限制的區域,可以簡化頻率合器的複雜度。模擬的最大轉換增益在102GHz 是42dB,頻寬是4GHz,noiseigure 是12.2dB。IIP3 是-26dBm,面積是0.95 x 0.8 mm2,消耗110mW 的功率。New sensor technology enables the generation of passive millimeter-wavePMMW) imaging at video-rate, which has the ability to form images in low-visibilityondition such as haze, fog, clouds, or smoke. In recent years, many critical circuitsperated at W-band have been fabricated in CMOS technology to demonstrate theotential of CMOS circuits at W-band. For the demand of low cost, low power andigh integration, this thesis presents the V-band and W -band LNAs and W-bandeceiver in 0.13-μm and 65-nm CMOS technologies. V-band LNA is fabricated in a 0.13-μm CMOS technology. This LNA employsm-boosted and current reused techniques to achieve better noise performance andower power consumption under the same gain requirement. The measured peakoltage gain is 20.4dB at 54GHz excluding the loss of balun and open-drain stage.he measured average noise figure is 9dB with a minimum of 7dB at 59GHz. TheIP3 is –15dBm while the core area of LNA is 0.4 x 0.37 mm2 and consumes 7.2mWith supply voltage of 1.2V. Using the same current reused technique, the W-bandLNA is designed in a 65-nm CMOS technology. The measured S21 is 11dB at03GHz with 10dB noise figure. The IIP3 is about –14dBm while the area is 0.17 x.38 mm2 and consumes 25mW with 1.5V supply.he W-band receiver is designed in CMOS 65-nm technology with 1V supply.his highly integrated receiver, which employs the heterodyne architecture, provideshe function of PMMW imaging and data communication. The proposed frequencyoubler using an injection-locked oscillator operated at the voltage-limited region caneduce the complexity of frequency synthesizer. The simulated maximum conversionain is 42dB at 102GHz with bandwidth of 4GHz and noise figure of 12.2dB. TheIP3 is about -26dBm while the area is 0.95 x 0.8 mm2 and consumes 110mW.1. Introduction.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Overview of Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 3.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. Passive Millimeter-wave Imaging System and CMOS Technology.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Passive Millimeter-wave Imaging System . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Spatial Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Thermal Sensitivity . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Scanning and Beam-forming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.4 Intermediate Frequency and Dispersion . . . . . . . . . . . . . . . . . . . . . 8.3 Receiver Architecture and Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Phase-array Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.1 RF Front-end for Passive Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 Specifications for Data Communication . . . . . . . . . . . . . . . . . . . . . 12.5 CMOS Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5.1 MOS Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5.2 Marchand Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5.3 Micro-strip Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.5.4 Passive Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.6 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21. V-band and W-band Circuit Design Techniques.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.2 Topologies of LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.2.1 Common-source LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.2.2 Common-gate LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.2.3 Gm-boosted LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.3 V-band Fully Differential Gm-boosted LNA. . . . . . . . . . . . . . . . . . . . . . 31.3.1 Proposed V-band fully differential LNA. . . . . . . . . . . . . . . . . . . . . 31.3.2 Simulated Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.3.3 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.3.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.4 W-band LNA with Current-reused Technique. . . . . . . . . . . . . . . . . . . . . 42.4.1 W-band LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.4.2 Experimental Results. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 45.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48. Design of W-band Receiver.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 Receiver Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 Circuit Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.4 Building Blocks of W-band Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55.4.1 Low Noise Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55.4.2 1st Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57.4.3 IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60.4.4 2nd Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4.5 Baseband Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.4.6 Frequency Doubler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.4.7 Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69.4.8 LO Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 70.4.9 Simulation Results of Receiver Chain . . . . . . . . . . . . . . . . . . . . . . . 70.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74. Conclusions2743902 bytesapplication/pdfen-US接收機低雜訊放大器毫米波receiverLNAmillimiter-wave應用於W 頻帶接收機前端之互補式金氧半場效電晶體毫米波電路設計技巧CMOS Millimeter Wave Circuit Design Techniques for W-band Receiver Front-Endthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/189084/1/ntu-97-R95943106-1.pdf