陳兆勛臺灣大學:高分子科學與工程學研究所陳愷伶Chen, Kai-LimgKai-LimgChen2010-05-122018-06-292010-05-122018-06-292009U0001-2201200914032600http://ntur.lib.ntu.edu.tw//handle/246246/183141本研究的主要目的是探討染料共敏化現象在染料敏化太陽能電池中的影響。DSSC而言,光電轉換效率取決於染料可吸收的光波長範圍以及電子轉移速率。一般DSSC使用的染料主要光吸收範圍約在400nm-600nm,在紅光區的吸收表現便已呈疲態。因此本研究欲利用混摻染料以達到延伸吸收光波長範圍,進而提昇DSSC的效率。驗上選用了常見的聯吡啶釕錯合物染料N3(cis-di(thiocyanato)-bis (2,2''-bipyridyl-4,4''-dicarboxylic acid)-ruthenium(II),Ru(dcbpy)2(SCN)2)以及主要吸收波段為紅光區的酞花青染料(bis(3,4-dicarboxypyridine)-(phthalocyanato) ruthenium(II),PcRu(dcpy)2)混摻製作共敏化DSSC。合成N3與PcRu(dcpy)2兩種染料並在其中加一層Al2O3薄膜以期增加染料吸附量,兼顧延伸吸收光波段與染料吸附量。 然而由實驗結果可以發現PcRu(dcpy)2與N3的能階並不合適,前者的EHOMO過高使得電洞的傳遞受到阻礙而無法形成迴路。The main purpose of this research is to study co-sensitization in the dye-sensitized solar cell (DSSC) .s DSSC, photon-to-electron conversion efficiency is depend on the range of wavelength dye absorbs and the rate of electron shift from dye to electrode. The dye used in DSSC generally absorb light with 400nm-600nm in wavelength for the most of part while light-absorption is weak beyond 600nm. In this study, therefore, blending dyes is for extending the range of light absorption and improving the efficiency of DSSC further.he common ruthenuim complex, N3 (cis-di(thiocyanato)-bis(2,2''-bipyridyl -4,4''-dicarboxylic acid)-ruthenium(II),Ru(dcbpy)2(SCN)2), and phthalcyano ruthenium complex, bis(3,4-dicarboxypyridine)-(phthalocyanato) ruthenium(II),PcRu(dcpy)2, which mainly absorb red radiation zone are chosen to fabricate co-sensitized DSSC. In order to taking both extension of light absorption and increasing adsporption of dyes, a layer of Al2O3 thin-film is inseted into synthsyized N3 and PcRu(dcpy)2. However, the results reveal that the energy band of PcRu(dcpy)2與N3 can not macth. EHOMO of the former is too high to obstruct the shifting of holes so that the circurt is cutted.摘要 Ibstract II錄 III目錄 V目錄 VI1章 緒論 1-1 前言 1-2 太陽能電池 2-2-1 光伏打太陽能電池 2-2-2 光化學太陽能電池 4-2-3 染料敏化太陽能電池 5-2-4 有機太陽能電池 6-3 研究動機與目的 72章 實驗原理與文獻回顧 9-1 半導體簡介 9-1-1 能帶結構與費米能階 9-1-3 二氧化鈦 11-2 光敏化染料 12-2-1 染料工作原理 12-2-2 釕錯合物 14-3 電解質 16-4 反電極 17-5 染料敏化太陽能電池工作原理 18-6 染料敏化太陽能電池的光電轉換效應 203章 實驗設備與方法 22-1 實驗藥品與材料 22-2 實驗設備 23-3 實驗流程 24-3-1 實驗物品的預處理 24-3-2 聯吡啶釕錯合物染料(N3)之製備 24-3-3 酞花青釕錯合物染料(PcRu(dcpy)2)之製備 26-3-4 白金反電極之製備 28-3-5 二氧化鈦/染料薄膜電極製備 28-3-6 電解液之製備 29-3-7 染料敏化太陽能電池組裝 30-4 染料性質分析與測試 30-4-1 紫外光/可見光吸收光譜儀 (UV/Vis Spectrometer) 30-4-2 循環伏安儀 (Cyclic Voltammetry) 31-5 二氧化鈦薄膜性質分析與測試 31-5-1 傅立葉轉紅外線光譜儀 (FT-IR) 31-6 染料敏化太陽能電池效率測試 33-6-1 光電轉換效率量測系統 334章 實驗結果與討論 34-1 染料性質討論 34-1-1染料吸收光譜(UV-vis spectrum) 34-1-2 循環伏安圖(Cyclic Voltammogram) 35-2 二氧化鈦薄膜性質討論 37-2-1 吸收光譜(UV-vis spectrum) 37-2-2循環伏安圖(Cyclic Voltammogram) 38-2-3 傅立葉轉換紅外光吸收光譜圖(FT-IR) 39-3 染料敏化太陽能電池效率 40-3-1 I-V曲線圖 405章 結論與建議 42-1 結論 42-2 建議 43考文獻 45application/pdf4354683 bytesapplication/pdfen-US染料敏化太陽能電池共敏化染料混摻dye-sensitized solar cellco-sensitizedblending dye酞花青與聯吡啶釕錯合物染料共敏化現象之於染料敏化太陽能電池的應用與探討Study and Application of Co-sensitization by Phthalocyanato and Bipyridyl Ruthenium Dye for Dye-Sensitized Solar Cellsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/183141/1/ntu-98-R94549012-1.pdf