2020-08-012024-05-13https://scholars.lib.ntu.edu.tw/handle/123456789/651674摘要:Mg-Ca合金是重要的可生物降解金屬植體材料,其重量密度與楊氏彈性模數相當接近人體骨骼,不會發生應力遮蔽效應,而且鎂、鈣都是人體必須的營養元素,無細胞毒性等問題,於心血管支架、傷口癒合裝置與骨科植體等生醫領域具有高度的應用發展潛力。然而Mg-Ca合金的降解速率過快,恐怕無法持久提供足夠的支撐力量,也會造成體內酸鹼值改變而對身體產生負面影響。本研究計畫擬應用原子層沉積(ALD)技術,於Mg-Ca合金表面沉積TiO2、ZrO2等奈米氧化物薄膜,藉以減緩與控制Mg-Ca合金之降解速率,並闡明奈米氧化物薄膜對於Mg-Ca合金生物相容性之影響,另亦搭配原子層退火(ALA)技術,進一步優化薄膜品質與精準調控ALD-Mg-Ca合金之降解速率。計畫將分三年進行: (1)第一年度主要研發適用於Mg-Ca合金之Thermal ALD與Plasma-enhanced ALD薄膜沉積技術,並建立其最佳化製程參數。(2)第二年度主要應用第一年建立之最佳化Thermal ALD與Plasma-enhanced ALD製程技術,製備ALD-Mg-Ca合金試片,並進行其降解速率控制及生物相容性等之分析評估。(3)第三年度則將原子層退火(ALA)技術導入於ALD薄膜沉積程序,製備ALA-Mg-Ca合金試片,進行其降解速率控制及生物相容性等之分析評估,並與第二年之研究結果進行比較。藉由系統性之研究與實驗,建立最佳化之原子層沉積(ALD)與原子層退火(ALA)製程參數,並進行生物醫學相關之檢測分析,實質評估ALD與ALA技術於Mg-Ca合金降解速率控制之適用性,提供後續動物試驗與實際應用之重要參考依據。<br> Abstract: Mg-Ca alloys are important biodegradable metallic implant materials. Their density and Young’s modulus of elasticity are close to those of cortical bone. Hence, these alloys would not occur the stress shielding effect. In addition, the Mg and Ca are necessary nutrient elements without toxicity for human body. Mg-Ca alloys have high potential to be applied as biodegradable implants, including the cardiovascular stents, wound-closing devices, orthopedic implants, etc. However, the degradation rate of Mg-Ca alloys is too fast to provide sufficient supporting force. Besides, the significant pH change due to the fast release of Mg and Ca might be harmful to human body. This project will use the atomic layer deposition (ALD) technique to deposit TiO2and ZrO2 nano-oxides on the surface of Mg-Ca alloys. We aim at reducing and controlling the degradation rate and clarifying the biocompatibility of Mg-Ca alloys through the surface modification of these ALD coatings. We also introduce the technique of atomic layer annealing (ALA) to optimize the film quality and to control the degradability of Mg-Ca alloys more precisely. In the first year, the research subjects are to develop the suitable ALD coating technologies for Mg-Ca alloys, including the thermal ALD and plasma-enhanced ALD, and to build up the optimal ALD processing parameters. In the second year, we will prepare the ALD coatings on Mg-Ca alloys by using the optimal ALD processing parameters developed in the first-year project, and then to analyze the degradation rate and biocompatibility. In the third year, we will prepare the ALA coatings on Mg-Ca alloys by introducing the ALA technique during the ALD process, and then to analyze the degradation rate and biocompatibility. We also compare the experimental results obtained in the second and third years for Mg-Ca alloys to understand the effect of atomic layer annealing. By carrying out the systematic researches and experiments in this three-year project, the optimal ALD and ALA processing parameters will be built up. The degradability and biocompatibility of the ALD and ALA-treated Mg-Ca alloys will be evaluated. These results will be provided as the important database for the further tests of in vivo performances in the animal body and practical applications.可生物降解金屬植體鎂鈣合金原子層沉積降解速率生物相容性Biodegradable Metallic ImplantsMagnesium-Calcium AlloysAtomic Layer DepositionDegradation RateBiocompatibility原子層沉積技術應用於可生物降解Mg-Ca合金之降解速率控制及生物相容性研究