2007-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/690173摘要:在擬進行的研究計畫中,吾人將基於一較廣義且精確之靜電力計算公式,詳細地探討邊界效應對電泳的影響。採用球形粒子在球殼內的幾何系統,吾人擬分三個階段來進行相關的分析。第一階段將探討一充滿牛頓或卡羅流體之帶電球殼對於一帶固定電位的硬球粒子在其內之電泳行為的影響;由於球殼可帶電,必須考慮電滲透流的效應,預期將可發現一些特殊現象。其次,將延伸至硬球粒子表面具電荷可調整特性的情況;典型的例子包括雙性膠體。在最後階段的研究中,吾人將探討一表面覆蓋一離子可穿透之帶電膜的粒子在球殼中的電泳行為;主要的應用例包括細胞與表面具高分子層之粒子的分離與定性。<br> Abstract: The boundary effect on electrophoresis is investigated by considering a sphere-in-spherical cavity geometry. A general formula, which is by far the most general one, for the evaluation of the electric force acting on a particle will be adopted to calculate its mobility. In the first phase of the proposed research the electrophoretic behavior of a rigid sphere in a Newtonian and or a Carreau fluid will be discussed under the condition of constant surface potential. In particular, the influence of the electroosmotic flow arising from a charged cavity is examined. The analysis will be extended to the case where the surface of a particle is of charge-regulated nature in the second phase of the proposed research, and to the case where a particle comprises a rigid core and an ion-penetrable membrane layer, which simulates biological cells and particles covered by a membrane layer in the last phase.電泳邊界效應球在球殼中牛頓流體卡羅流體electrophoresisboundary effectsphere-in-spherical cavityNewtonian fluidCarreau fluid球在充滿牛頓或卡羅流體之球形孔動中的電泳