謝國煌臺灣大學:高分子科學與工程學研究所陳致豫Chen, Chih-YuChih-YuChen2007-11-292018-06-292007-11-292018-06-292007http://ntur.lib.ntu.edu.tw//handle/246246/62895本實驗目的在於合成良好的電洞注入及傳輸材料以取代目前使用最為廣泛的PEDOT:PSS,並將此系列的高分子材料運用在有機電激發光元件中,試驗其作為電洞注入層及電洞傳輸層的性質並加以探討。合成出的高分子材料是分為兩大系統,第一系統是將具有電洞傳輸性質的具羥基之卡唑衍生物和三苯基胺衍生物依不同比例以異佛爾酮二異氰酸酯連接成聚氨酯型態的五種共聚合物。另一系統則是以具羥基之卡唑衍生物以及具有電洞阻擋性質和電子傳輸性質的噁唑衍生物依不同比例以異佛爾酮二異氰酸酯連接成聚氨酯型態的五種共聚合物。聚氨酯本身結構即具有良好的電洞傳輸效果,本實驗目的在這兩種系統中找出最佳比例條件的聚合物能運用在電激發光元件中讓元件發光效率及亮度有效提升。元件製備的部份分為兩個系列: 一、ITO/PU/Ir(ppy)3+t-PBD+PVK/Mg/Ag 單獨使用合成之聚氨酯為電洞注入及傳輸層並測量其發光性質,和標準元件1S1:ITO/Ir(ppy)3+t-PBD+PVK/Mg/Ag之發光性質比較,相較於S1,亮度可從296 cd/m2有效提升至14000 cd/m2。效率也由1.02 cd/A提升至13.4 cd/A,顯示本實驗合成之聚氨酯材料用於電洞注入及傳輸層對元件發光亮度及效率有顯著提升。 二、ITO/PEDOT:PSS/PU/Ir(ppy)3+t-PBD+PVK/Mg/Ag 此系列元件引入作PEDOT為電洞注入層,以合成之聚氨酯作為電洞傳輸層。 將這一系列元件和標準元件S2:ITO/PEDOT:PSS/Ir(ppy)3+t-PBD+PVK/Mg/Ag 發光性質比較。在此系列中,相較於標準元件S2,亮度可由6250 cd/m2有效 提升至12500 cd/m2。效率也由21.8 cd/A大幅提升至34.7cd/A,顯示本實驗合 成的電洞傳輸材料對於提升元件效能有極大助益。In this thesis, two series of hole-injecting and hole-transporting materials are synthesized and characterized. These two series are (1) TRI-IPDI-Cz series, triarylamine derivatives (denoted as TRI) and Carbazole derivatives (denoted as Cz) linked by isophorone diisocyanate with different ratios to form a series of polyurehtanes (PU) and (2) Cz-IPDI-OXD series, were synthesized in a similar fashion as (1) only with different monomers, oxadiazole derivatives, denoted as OXD. These materials are applied in electroluminescent device as hole-injecting and hole-transporting layer to improve the performance. The devices are separated into two systems: a. ITO/PU/Ir(ppy)3+t-PBD+PVK/Mg/Ag : PUs were applied in the devices and the devices were compared with the standard device S1:ITO/Ir(ppy)3+t-PBD+PVK/Mg/Ag. The brightness was increased to 14000 cd/m2, the current efficiency rose to 13.4 cd/A and turn-on voltage was reduced to 21V (at 100 cd/m2), compared to 296 cd/m2, 1.02 cd/A and 37 V in S1; and b. ITO/PEDOT:PSS/PU /Ir(ppy)3+t-PBD+PVK/Mg/Ag, compared to standard device S2: ITO/PEDOT:PSS/ Ir(ppy)3+t-PBD+PVK/Mg/Ag. The brightness was increased to 12500 cd/m2, the current efficiency was up to 34.7cd/A, compared to 6250 cd/m2 and 21.8 cd/A in S2.Table of contents Table of Contents…………………………………………………………………….I List of Figures…..……………………………………………………………..……III List of Tables………………………………………………………..………………..V List of Schemes………………………………………………………………..……VI Abstract (Chinese Version)………………………………………………......…VII Abstract…………………………………………………………………………….VIII Chapter 1 Introduction………………………………………………...…………..1 1-1Brief History of PLED 1 1-2 Principles of Organic electroluminescence and OLED device structure 2 1-3 Organic Electroluminescent Materials 8 1-3.1 Polymeric Host Materials 9 1-3.2 Electron-Transporting Materials 10 1-3.3 Hole-Transporting Materials 12 1-3.4 Hole-Injecting Materials 15 1-4 Polyurethane Synthesis and Uses 16 1-5 Motivation and Organization of the thesis 18 Chapter 2 Results and Discussion 20 2-1 Design of the Polymer 20 2-2 Monomer Synthesis 21 2-3 Polymer Synthesis 23 2-4 Optical Properties 25 2-5 Thermal Properties 31 2-6 Electrochemical Properties 32 2-7 Effects of the PU Layer on the EL performance 36 2-8 Luminance and Spectral Properties of the PLED Device 44 Chapter3 Conclusion 47 Chapter 4 Experimental 48 4-1 Instrumentations 48 4-3 Monomer and Polymer Synthesis 51 4-3-1 Monomer Synthesis 51 4-3-2 Polymer Synthesis 58 References 61 Appendix………………………………………………………………….66 NMR Spectra..…………………………………………………………..…………...67 IR Spectra……..…………………………………………………………………..…78 CV Diagrams…..………………………………………………………………..…...83 UV-vis Solution Spectra.……………………….………………………………..…..88 UV-vis Solution Spectra…………………………………………………….…….....92 TGA Diagrams………………………………………………………………..…..…97 B-V Curve……………………………………………………………………....….101 I-V Curve……………………………………………………………………….…..111 Figure Legend Fig. 1-2.1 The Process of Organic Electroluminescence 4 Fig. 1-2.2 Typical DC-biased OLED Device 5 Fig. 1-2.3 Common Device Structures 7 Fig. 1-3.1 Common Host Materials 10 Fig. 1-3.2 Common Electron-transporting Materials 12 Fig. 1-3.3a Common Hole-transporting Materials 14 Fig. 1-3.3b Common Hole-transporting Materials 15 Fig. 1-3.4 Common Hole-injecting Materials 16 Fig. 1-5.1 Chemical Structures of The Studied Polymers 20 Fig. 2-4.1 UV-vis Solution Spectra of P1-P5 28 Fig. 2-4.2 UV-vis Film Spectra of P1-P5 28 Fig. 2-4.3 UV-vis Solution Spectra of P5-P9 29 Fig. 2-4.4 UV-vis Film Spectra of P5-P9 29 Fig. 2-4.5 PL Solution Spectra of P1-P5 30 Fig. 2-4.5 PL Film Spectra of P1-P5 30 Fig. 2-4.7 PL Solution Spectra of P5-P9 31 Fig. 2-4.7 PL Film Spectra of P5-P9 31 Fig. 2-6.1 Energy Diagram of the Materials 35 Fig. 2-7.1 Device Structures of System (1) and System (2) 38 Fig. 2-7.2 Brightness vs. Voltage of System(1) DP1-DP5, By Inserting P1-P5 as Hole-injecting Layer 39 Fig. 2-7.3 Brightness vs. Voltage of System(1) DP5-DP8, By Inserting P5-P8 as Hole-injecting Layer 40 Fig. 2-7.4 Current Efficiency vs. Voltage of System(1) DP1-DP5, By Inserting P1-P5 as Hole-injecting Layer 40 Fig. 2-7.5 Current Efficiency vs. Voltage of System(1) DP5-DP8, By Inserting P5-P8 as Hole-injecting Layer 41 Fig. 2-7.6 Brightness vs. Voltage of System (2) DDP1-DDP5, By Inserting P1-P5 as Hole-transporting Layer 43 Fig. 2-7.7 Brightness vs. Voltage of System(2) DDP5-DDP9, By Inserting P5-P9 as Hole-transporting Layer 43 Fig. 2-7.8 Current Efficiency vs. Voltage of System (1) DP1-DP5, By Inserting P1-P5 as Hole-transporting Layer 44 Fig. 2-7.9 Current Efficiency vs. Voltage of System (1) DP5-DP9, By Inserting P5-P9 as Hole-transporting Layer 44 Fig. 2-8.1 EL Spectra of Devices DP1-DP5 45 Fig. 2-8.2 EL Spectra of Devices DP5-DP9 46 Fig. 2-8.3 EL Spectra of Devices DDP1-DDP5 46 Fig. 2-8.4 EL Spectra of Devices DDP5-DDP9 47 Fig. 4-2-1 Evaporator structure 50 Table Legend Table 2-3.1 Molecular Weights and Thermal Properties of P1-P9 23 Table 2-4.1 Optical Properties of P1-P9 26 Table 2-6.1 The Electrical Properties of Materials 33 Table 2-7.1 EL Performance of P1-P9 in Devices of System (1) ITO/PU/Ir(ppy)3 +PVK+t-PBD/Mg/Ag and Standard Device, ITO/Ir(ppy)3 +PVK+t-PBD/Mg/Ag, denoted as S1 device 38 Table 2-7.2 EL Performance of DDP1-DDP9 in Devices of System (2) ITO/PEDOT:PSS/ PU/Ir(ppy)3 +PVK+t-PBD/Mg/Ag and Standard Device, ITO/PEDOT:PSS/ Ir(ppy)3 +PVK+t-PBD/Mg/Ag, denoted as S2 device 41 Scheme Legend Scheme 1 21 Scheme 2 22 Scheme 3 23 Scheme 4 24 Scheme 5 2544433614 bytesapplication/pdfen-US卡唑噁唑三苯基胺電激發光元電洞傳輸層CarbazoleOxadiazoleTriarylaminePLEDHole-Transporting卡唑、噁唑、三苯基胺衍生共聚高分子於電激發光元件之電洞傳輸層應用Application of Copolymers Containing Carbazole, Oxadiazole, Triarylamine Derivatives in PLED devicces as Hole-Transporting Layerthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62895/1/ntu-96-R94549014-1.pdf