牟中原臺灣大學:化學研究所王聖茹Wang, Sheng-RuSheng-RuWang牟中原指導2007-11-262018-07-102007-11-262018-07-102006http://ntur.lib.ntu.edu.tw//handle/246246/51727藉由密度泛函理論模擬含重金屬系統之物理化學特性,此論文研究不同模型下硫酸化氧化鋯表面之酸性。 由先前研究得知,硫酸化氧化鋯可在低溫下催化正丁烷成異丁烷的異構化反應,並且可藉由鋁的促進得到較高的催化活性和穩定度。以正方晶相氧化鋯為出發,研究在不同位置上,利用不同模型、不同函數、不同基底討論純的、水合的、加入硫酸與加入鋁的氧化鋯結構與能量。在可能的模型下分析振動頻律、電荷分佈、脫氫與氨氣或?啶(pyridine)吸附的能量來探討硫酸與鋁對氧化鋯表面路易士與布忍斯特酸的強弱。利用Kohn-Sham軌域的計算討論X光電子能質譜對?啶吸附表面後N1s軌域的化學位移。計算結果顯示硫酸根對於布忍斯特酸性強弱的增加扮演了重要的角色,而鋁的加入可以調控表面酸性的強弱。Density functional theory (DFT) calculations have been performed to investigate chem- ical and physical properties of mixed metal oxide systems including acidities with sev- eral models for the sulfated zirconia (SZ) system. It has been proposed that aluminum promoted SZ have higher catalytic activity and stability on n-butane to iso-butane iso- merization reaction. The structures and energies of pure, hydroxylated, sulfate adsorbed and aluminum promoted zirconium oxide were examined based on tetragonal phase using periodic plane wave and cluster model method, respectively, through di(R)erent models, sites, functionals and basis sets. The Br?nsted acidities as well as Lewis acidities on dif- ferent zirconium oxide surfaces were estimated from the vibrational frequencies, charge distributions, deprotonation energies and ammonia or pyridine adsorption energies to evaluate the e(R)ects of sulfur and aluminum species. In pyridine adsorptions, the XPS core-level shifts of N1s were calculated from Kohn-Sham orbital energy di(R)erences. It was found that the sulfate species plays an important role in elevating Br?nsted acidities and the aluminum species is used to modify the acid strengths.Acknowledgement i Abstract ii Contents iv List of Figures v List of Tables viii 1 Theoretical Background 1 1.1 Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . . 2 1.1.2 The Variational Principle . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Slater Determinants . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 The Hartree-Fock Approximation . . . . . . . . . . . . . . . . . . 4 1.2 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Slater-type Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Gaussian-type Orbitals . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Polarization Functions . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.4 Di(R)use Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 The Thomas-Fermi Model . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 The Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . 8 1.3.3 The Kohn-Sham equation . . . . . . . . . . . . . . . . . . . . . . 9 1.3.4 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . . 11 1.4 Comparison between DFT and HF . . . . . . . . . . . . . . . . . . . . . 13 2 Introduction: The Aluminum Promoted Sulfated Zirconia 15 3 Computational Details and Models 20 3.1 Periodic Boundary Condition Models of Aluminum Promoted Sulfated Zirconia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Two-Dimensional Calculations . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Bulk-Model Calculations . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Cluster Models of Aluminum Promoted Sulfated Zirconia . . . . . . . . . 21 3.2.1 Zr4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Zr8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Zr10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.4 Zr2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Acidity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Deprotonation Energies . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Adsorption Energies of basic probe molecule on the surface . . . . 27 3.3.3 Core-level Energies of pyridine N1s orbital . . . . . . . . . . . . . 27 4 Results and Discussion 29 4.1 Adsorption of Sulfate Species on Zirconia . . . . . . . . . . . . . . . . . . 29 4.1.1 Periodic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.2 Plane Wave Calculation . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.3 Cluster Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.4 Adsorption of Water . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.5 The Introduction of Aluminum . . . . . . . . . . . . . . . . . . . 41 4.2 The Vibrational and Charge Analysis of Zr4 and Zr8 Models . . . . . . . 56 4.2.1 The Vibrational Analysis . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.2 The Charge analysis . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 The Acidity Analysis of Zr4 and Zr8 Models . . . . . . . . . . . . . . . . 63 4.3.1 Deprotonation Energies . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.2 Adsorption of Base Molecule . . . . . . . . . . . . . . . . . . . . . 66 4.4 Aluminum Zirconia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5 Core-electron binding energies of the pyridine N1s orbital . . . . . . . . . 71 5 Conclusions 78 5.1 Innovations and Limitations of Methods . . . . . . . . . . . . . . . . . . 78 5.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A SIIZr8 Model 82 A.1 The Input File of Optimization . . . . . . . . . . . . . . . . . . . . . . . 82 A.2 The Output Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A.3 The Vibrational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 B Zr10OH-dissociate Model 86 B.1 The Input File of Optimization . . . . . . . . . . . . . . . . . . . . . . . 86 B.2 The Output Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Reference 88en-US密度泛函理論硫酸化氧化鋯酸性催化特性金屬氧化物Sulfated ZirconiaAciditiesMetal Oxide SystemsDensity Functional TheoryCatalytic Properties密度泛函理論對金屬氧化物系統之催化特性探討:硫酸化氧化鋯之酸性Density Functional Theory Study on Catalytic Properties of Metal Oxide Systems: Applications to Acidities of Sulfated Zirconiathesis