張進福臺灣大學:電信工程學研究所童健瑋TUNG, CHIEN-WEICHIEN-WEITUNG2010-07-012018-07-052010-07-012018-07-052009U0001-2307200916524200http://ntur.lib.ntu.edu.tw//handle/246246/188335近幾年隨著WiMAX與UWB(Ultra-wideband)等技術崛起,3GPP為確保現有3G行動通信技術的未來競爭優勢,正致力於LTE(long term evolution)標準的制訂工作。LTE最主要的目標在於提升資料速率、增進頻譜效率、增加涵蓋範圍與降低延遲。為了增加傳輸速率採用正交分頻多工存取技術與多天線技術,且在上傳通道中為了減少功率消耗採用單載波分頻多工存取,移動性中支援超高速移動速度(350km/hr),然而本文欲探討在上傳通道中使用多天線技術來降低在移動過程中所產生的換手失敗率,進而達到更好的效能以便在一定的速度中使得連線不會中斷。In recent years WiMAX and UWB technology emerges, 3GPP is now standardization process for the LTE (long term evolution) in order to guarantee the future competition advantage of existing 3G communication technology. The main targets for LTE include increased data rate、improved spectrum efficiency、improved coverage and reduced latency. In order to increase data rate adopt OFDMA (Orthogonal Frequency Division Multiple Access) and MIMO (Multiple Input Multiple Output) technology, used the SC-FDMA (Single Carrier – Frequency Division Multiple Access) to reduce power consumption at uplink, in the mobility support the ultra-high-mobility can reach 350km/hr. Furthermore, the performance evaluation used the MIMO technology to reduce handover failure for LTE uplink in mobility environment, and then reach better performance so as to will not be cut off at the certain speed.目錄試委員會審定書I 謝 II文摘要 III文摘要 IV目錄 X目錄 XIII一章 1.1. 行動通訊發展歷史簡介 1.1.1. IEEE 802.11a/g 4.1.2. UWB(Ultra Wide Band)(IEEE802.15.3a) 4.1.3. IEEE 802.11b(Wi-Fi) 4.1.4. 藍芽(Bluetooth)(IEEE 802.15.1) 4.1.5. ZigBee(IEEE 802.15.4) 5.2. LTE系統簡介[2] 5.3. LTE system architecture[3] 9.4. LTE downlink/uplink system architecture 10.4.1. LTE downlink architecture 10.4.2. LTE uplink architecture 11.4.3 LTE frame structure 11.5. channel description over mobility environment 13.6. Smart antenna system 16.7. LTE通道模型[7] 18.7.1 路徑耗損(path loss) 19.7.2 多路徑延遲(multi-path delay) 20.7.3 功率延遲概關(power delay profile) 20.7.4 角度擴展(angle spread) 22.8. Contents in each section 22二章 24.1. 換手目的 24.2. LTE換手機制簡介 25.2.1 同步延遲 30.2.2 註冊延遲(Registration delay) 30.2.3 認證延遲(Authentication delay) 30.2.4 隨機存取延遲(RACH delay) 31.3 模擬結果 36.3.1 模擬參數 37.3.2 換手延遲結果 39.4 討論 40三章 41.1 LTE RSS 模擬環境 42.1.1. LTE路徑損耗(path loss) 42.1.2. 多路徑傳輸(multi-path) 43.2 智慧型天線RSS傳輸模型: 45.3. RSS模擬流程圖 50.4. 模擬結果 51.4.1. 模擬參數表 51.4.2. 天線增益 52.4.3. 接收功率強度(RSS)衰減 55.4.4. 換手失敗率 58.5. 討論 59四章 61.1. LTE CIR 模擬環境 61.1.1. LTE路徑損耗(path loss) 62.1.2. 多路徑傳輸(multi-path) 63.2. 智慧型天線CIR傳輸模型 64.3. CIR模擬流程圖 65.4. 模擬結果 66.4.1. 模擬參數表 67.4.2.載波干擾比(CIR)衰減 68.4.3. 換手失敗率 71.4.4.接收信號強度與載波干擾比之比較 72.5. 討論 73五章 75.1.論文總結 75.2.未來產望 76考文獻 771207302 bytesapplication/pdfen-USWiMAXUWB3GPPLTE資料速率頻譜效率涵蓋範圍延遲正交分頻多工存取多天線單載波分頻多工存取換手失敗率data ratespectrum efficiencycoveragelatencyOFDMAMIMOSC-FDMAhandover failure rateLTE系統架構具有移動環境使用多天線在換手的效能分析Handover performance evaluation for multi-antenna LTE mobile communication systemthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/188335/1/ntu-98-R96942090-1.pdf