2008-08-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/712682摘要:自然界的生物經過千百萬年的演化過程之後,大都擁有非凡的環境適應能力,尤其是在運動能力的表現上,更可說是「最佳化」的設計。魚類是水中生物進化的典範,其游泳運動方式具有極高的能量效率以及機動性,並且能夠穿梭於各種複雜流況的水域之中。在本計畫的研究裡,我們挑選游泳模式屬於竹莢魚類(carangiform)的血鸚鵡魚(學名:Cichlasoma citrinellum XC.synspilum;英文名:Bloody Parrot)作為研究主軸,一方面進行實驗及理論研究,從學理角度探討魚類高效率及高機動性游泳的原理奧秘;另一方面,將同時進行仿生機器魚的研製工作,將理論研究及實際應用做結合,為新型水下仿生推進載具提供一個嶄新的面向。在研究分工上,本團隊將整個總計劃分成四個子計畫,每個子計畫各有其研究重點及目標。子計畫一為水中生物推進模式之學理研究,包含了四項重點:魚類、蝦類的推進原理研究、魚類軟硬鰭功能差異比較、魚類平衡模式探討、以及立體粒子影像測速儀(SPIV, Stereoscopic Particle Image Velocimetry)之開發。子計畫二研究欠致動控制於仿生機械之應用,致力於解決機械魚在設計與控制上的關鍵問題,並從學理角度探討自然界生物是如何發揮身體彈性與慣性的動態,不盲目地使用肌肉力量,而達到執行高效率運動的之目的。子計畫三將研究魚類如何利用來自上游流場或背景流場中之渦漩動量或能量,而達到最佳省能狀態的游泳模式,其結果可用於改善現行的水上及水中推進機構與交通工具的耗能、機動性低與高噪音等缺點。子計畫四將模仿魚眼及水下生物的眼睛,發展可應用於水下環境的光學透鏡,包括變焦機制之研發改良以及魚眼成像系統之製作和整合。<br> Abstract: After long-period evolution, animals are considered to be “optimal ”design with their great capability of environmental adaptation, especially the locomotive performance. Fish are outstanding swimmers in water;they have extremely high propulsion efficiency and great maneuvering ability. In this project, we choose Bloody Parrot fish as the subject animal, which belongs to the “ subcarangiform ” classification of fish propulsion mode. The secrets of fish swimming will be explored theoretically and experimentally in this project. At the same time, the development of robotic fish will be carried out. The combination of theory and practical application will provide a brand new way for the innovation of biomimmetic underwater propulsion vehicles. The whole research work was divided into four groups and will be conducted by four sub-projects. The sub-project one focuses on the principle and theory development, which includes the following four aims:(1)propulsion of fish and shrimps(2)performance comparison of rigid and deformable fins (3)the stabilization functions of fish fins(4)development of stereoscopic particle image velocimetry (SPIV). The sub-project two focuses on the application of under-actuated systems to biomimmetic machines. The key problems regarding the mechanical design and control of our robotic fish will be solved by the sub-project two. Sub-project three will investigate the energy-saving swimming method of fish in unsteady flows, which momentum and energy of background vortices were utilized. The results of sub-project three can be used to improve the existing design of underwater machines, such as the drawbacks of high energy-consumption and high noise level. The task of sub-project four will concentrate on the development of underwater vision-sensor which mimics fish eyes. Lens focusing and imaging are the key points regarding this matter.仿生水下推進欠致動控制渦流節能水下視覺竹莢魚模式立體粒子影像測速儀Biomimeticsunderwater propulsionunder-actuatedeenergy- savingunderwater-visionsubcarangiformSPIV竹筴魚類推進力學與仿生動力機械研發-總計畫