2009-09-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/682796摘要:人類基因定序後的生命科學發展主流,包括了基因質體學(genomics)、轉譯質體學(transcriptomics)、蛋白質體學(proteomics)及代謝質體學(metabolomics)。其中代謝體代表生物體整合個體基因表現及外界影響之後表現方式(phenotype) 。著墨於生物體中各個分子間相互轉換關係來解釋生命現象的現代生命科學,稱為代謝質體學,本學門是一個結合多重學科訓練multiple discipline的新生命科學研究導向,因此又稱之為整合性生命科學(Integrated Life Science)或系統性生物學(System Biology)。未來若能利用此現代化高解析分離儀器進行研究探討生命現象中各個大、小分子間的相互轉換關係與途徑,將會使得本院在生命現象研究上有更進一步的發展。 儀器用途: 目前代謝體主要的分析儀器包括高磁場核磁共振儀(1H-NMR)及液相層析儀/飛行式質譜儀,此兩種儀器在代謝體研究上各有不同之優缺點。此次所申請採購之儀器由極致液相層析儀(UPLC)及串聯式四極柱質譜儀-飛行式質譜儀(q-TOF MS)所組成。極致液相層析儀(UPLC)此可將複雜的分析物有效分離,且儀器靈敏度高,不易受到干擾,因此適用於分析組成複雜且低濃度的生物材料如細胞組織等。而飛行式質譜儀(TOF MS)是以離子的飛行時間不同來分離,其解析度比單獨串聯式四極柱質譜儀較佳,而且可藉二次裂解產物結構分析提供化合物定性分析更準確的結果。此次採購之儀器所建立之實驗室,能就近提供生命科學院相關系所在教學、研究上之支援。可以應用於蛋白質體的分析、定序與功能基因分析及鑑定;藥、毒物在生物體內的代謝途徑即時分析與代謝動力學研究;植物與微生物天然物組體的化學檢定與結構解析,並有助於新藥開發、生合成之動力學研究;動、植物生理反應與代謝的時序變化;微生物代謝物之化學分類與生物多樣性分析;動、植物之化學生態之他感物質分析;以及動、植物食品、飼料或生物體內系列生物毒與抗生素殘留的精密檢測;環境荷爾蒙分析等。再配合本院既有在生物有機分析與有機波譜之完善儀器組合,必能提供本校各系所之生物分子代謝途徑與分析研究更加完整之數據結果。擴大研究領域之範疇,整合生命科學與有機化學於生物有機領域,使生命科學內容與深度得以提升,增加本校整體國際競爭力。實例如逆境生物學、生化營養學、食品成分分析、天然物成分分析、發酵研究、藥毒物作用機制、藥毒物代謝、物種表現型分類、疾病標記找尋、遺傳突變之影響、代謝途徑調節等若加入代謝體學的成果將與先前著墨的基因體學及蛋白質體學的成果互相映應,得到互補且更深入的瞭解。 <br> Abstract: Systems biology attempts to account for biological system behavior that cannot be adequately explained by investigations at the molecular level alone. Two approaches have been widely used in the study of systems biology- i) the panomics route that relies on the generation of high-throughput data on the components of the system and ii) in silico routes that attempt to provide information on the interactions that might be involved in to effect a function. Clearly, it has become essential to call in other players to define gene function in the post-genomic era. These include trancriptomes, proteomes and metabolomes, each relating to the make-up of the cell associated with the respective components, RNA, proteins and metabolites. However metabolomics, the comprehensive analysis of the complete pool of cellular metabolites (the `metabolome`) closely interacting with the other genomic levels, and directly reflecting the cell`s phenotype, is sometimes inadvertently overlooked in post-genomic studies. Most strategies for capturing comprehensive metabolomic data employ a separation technique followed by sensitive detection, typically using mass spectrometry (MS). Separation techniques include two-dimensional thin layer chromatography (2D-TLC), capillary electrophoresis (CE), gas chromatography (GC) and liquid chromatography (LC). In this project, we are to purchase and set up high-performance liquid chromatography-tandem q-TOF Mass spectrometer for the analysis of primary and secondary metabolites collected from various samples such as cultured cells, animal tissues, plant tissues and microorganisms. In addition, technical assistance will be provided to faculty members of the college of life science, thus helping establish metabolomics research in this university.系統生物學代謝體學質譜儀液相層析Systems biologymetabolomicsmass spectrometerliquid chromatography人力結構改善/生命科學院/科技共同空間核心平台項下之代謝體學