段維新Michel DUPEUX臺灣大學:李炤佑Lee, Chao-YuChao-YuLee2007-11-262018-06-282007-11-262018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/55309本論文是研究金屬與陶瓷界面的機械強度性質,陶瓷是使用商用鈦酸鋇粉,金屬部分為銀膏及鎳膏所製成的金屬膜,膜的成型方是為網版印刷法。使用不同表面性質的緻密鈦酸鋇做為基板,金屬膏覆蓋在陶瓷基板上並在不同溫度下燒結,試片加工製成特殊形狀以符合Blister test的試片形狀要求。 Blister test可以得到量化的介面強度,並可由此得出介面裂縫延伸的所需的能量,在實驗過程中會伴隨著塑性變形,在本實驗中我們提出一個簡單的處理方法以減去塑性變形的影響。在不同銀膠燒結溫度下,銀及鈦酸鋇的界面強度落在4 -7 J/m2 之間,鎳及鈦酸鋇的界面強度約為1 J/m2。 本實驗中嘗試發展三種 indentation 方法來量測相同的金屬與陶瓷界面的強度,經由 normal及 interface indentation 所得出的銀與碳酸鋇的界面強度約為 0.5 J/m2. 第三種測試方法Cross-sectional indentation test 為本研究中發展出的全新測試方法,並提出一種新的理論分析。依照不同的分析模型,所得出的銀與碳酸鋇的界面強度約為 1到3 J/m2.The present study investigates the mechanical strength of metal/oxide interface. Ceramic was commercial available BaTiO3. Silver and nickel pastes are used as the metal materials. The metal film was prepared by screen-printing. Specimens with Ag or Ni layer, fabricated at different sintering temperatures, covering dense BaTiO3 substrates with different surface roughness have been prepared with a special geometry appropriate for blister and indentation testing. The blister test technique allows numerical estimation of interfacial adhesion strength through determination of the interfacial crack propagation energy. A simple method is proposed to correct for generalized plastic straining of silver layer. The average value of Ag/BaTiO3 adhesion strength ranges from 4 J/m2 to 7 J/m2 according to the firing temperature of Ag. For Ni film fired at 1200°C for 2 h on dense barium titanate, the average value is about 1 J/m2 Three indentation tests are developed to measure critical energy release rate of the same metal/oxide interfaces. The average Gci of Ag/BaTiO3 interface is about 0.5 J/m2 according to normal and interface indentation tests. Cross-sectional indentation test has been also successfully performed and a new model for analysis of its results is developed. The average Gci of Ag/BaTiO3 interfaces are obtained from 1 J/m2 to 3 J/m2 according to the models.Introduction 1 Chapter Ⅰ: Metal/Oxide Interfaces 5 1. Introduction 7 2. Metal-oxide interfaces 7 2.1. Formation of metal/oxide interface 7 2.2. Interface chemistry and atomic structure 8 2.3. Fracture behavior of metal-oxide interface 10 2.4. Metal-oxide adhesion 19 3. Metal-oxide adhesion measurement 22 3.1. Tape test 23 3.2. Pin Pull test 23 3.3. Peel test 25 3.4. Scratch test 26 3.5. Beam bending test 28 3.6. Indentation test 30 3.7. Laser spallation technique 32 3.8. Telephone cord delamination method 33 3.9. Interface indentation test 34 3.10. Cross-sectional nanoindentation test 35 3.11. Blister test 36 4. Conclusions 37 References 38 Chapter II: Interface Adhesion Measurement by Blister Test 43 1. Introduction 45 2. Development of the blister test 47 3. Mechanical analysis 51 3.1. Nomenclature 51 3.2. Criterion for debonding 52 3.3. Crack extension force 54 3.4. Near edge loads 71 3.5. Mode mixity in blister test 73 3.6. Correction for plastic work 75 4. Conclusions 78 References 80 Chapter Ⅲ: Interface Adhesion Measurement by Indentation Test 85 1. Introduction 87 2. Development of the indentation test for measuring interfacial fracture toughness 90 2.1. Development of the normal indentation test 90 2.2. Development of the interface indentation test 90 2.3. Development of the cross-sectional indentation test 91 3. Mechanical analysis 93 3.1. Normal indentation test 93 3.2. Interface indentation test 94 3.3. Cross-sectional indentation test 96 3.3.1. The Plate model 96 3.3.2. Analytical approximation (Tapered beams model) 98 3.3.3. The model of an elastic plate with elastically restrained edges 103 3.3.4. Point load model 110 4. Mode mixity of cross-sectional indentation test 111 5. Conclusions 114 References 115 Chapter Ⅳ: Experiments 121 1. Materials 123 1.1. Barium Titanate 124 1.2. Metals 125 2. Blister test 128 2.1. Blister test apparatus 128 2.1.1. Sample mounting 129 2.1.2. Data acquisition system 131 2.1.3. Theory of fringe projection method: 133 2.2. Sample preparation for Blister test 141 2.2.1. Silver (Ag)/Barium Titanate (BaTiO3) 141 2.2.2. Nickel (Ni)/Barium Titanate (BaTiO3) 145 2.2.3. Nickel (Ni)/Silver (Ag)/ Barium Titanate (BaTiO3) 147 2.2.4. Silver (Ag)/Nickel (Ni) 148 3. Indentation test 149 3.1. Indentation test apparatus 149 3.2. Sample preparation for indentation test 150 3.2.1 Interface and cross-sectional indentation test 150 3.2.2 Normal indentation test 151 4. Conclusions 151 References 153 Chapter Ⅴ: Results and Discussion 155 1. Blister test 157 1.1. Silver (Ag)/Barium Titanate (BaTiO3) 158 1.1.1. Influence of different silver film firing temperature 160 1.1.2. Influence of different substrate roughness 175 1.1.3. Influence of different substrate firing temperature 181 1.2. Nickel (Ni)/Barium Titanate (BaTiO3) 184 1.3. Nickel (Ni)/Silver (Ag)/ Barium Titanate (BaTiO3) 190 1.4. Silver (Ag)/Nickel (Ni) 193 2. Indentation test 194 2.1. Normal indentation test 195 2.2. Interface indentation test 200 2.3. Cross-sectional indentation test 204 3. Comparison between blister and indentation test 209 3.1. Comparison between Gci from normal indentation test with the values from blister test. 209 3.2. Comparison between Gci from interface indentation test with the values from blister test. 210 3.3. Comparison between Gci from cross-sectional indentation test with the values from blister test. 210 4. Conclusions 211 4.1. Silver (Ag)/Barium Titanate (BaTiO3) 211 4.2. Nickel (Ni)/Barium Titanate (BaTiO3) 212 4.3. Nickel (Ni)/Silver (Ag)/ Barium Titanate (BaTiO3) 213 4.4. Silver (Ag)/Nickel (Ni) 213 References 214 Chapter VI: General conclusions and future work 217 Published Work 227 Appendix I 22910614705 bytesapplication/pdfen-USblister testinterface indentation testcross-sectional indentation test銀鎳鈦酸鋇金屬陶瓷界面接著強度silvernickelbarium titanatemetal/oxide interfaceadhesion strength金屬/陶瓷界面工程:介電陶瓷與金屬電極之接著強度研究Metal/Ceramic Interface Engineering: Adhesion Strength Measurement between Dielectric Ceramic and Electrode Metalsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55309/1/ntu-96-D92527006-1.pdf