侯文祥臺灣大學:生物環境系統工程學研究所莊凱名Chuang, Kai-MingKai-MingChuang2010-05-052018-06-292010-05-052018-06-292008U0001-2506200816075300http://ntur.lib.ntu.edu.tw//handle/246246/181126由於淡水河中游底水層呈低溶氧狀態,本研究嘗試使用低耗能間歇式湧升裝置促進上下水層交換以間接增氧,達到改善底水層溶氧特徵。 調查中游大稻埕水域的水理水質特徵,作為設計湧升柱的參考。夏、冬兩季現地量測大稻埕水域的底泥耗氧速率。設計增加湧升柱內的空氣室體積(Ⅲ型),分別於大稻埕水域現場與露天止水式湖泊進行增氧效率、交換上下水體能力、擴散能力等測試。且在實驗室以止水式水體進行湧升柱的標準試驗,比較湧升柱Ⅲ型與文獻Ⅰ型的效率差異。另外,也實地測試連續增氧式曝氣船在高雄愛河中游的增氧效率與擴散能力,協助建立整治河川水質的工程資料。 研究得知,大稻埕水域在漲退潮期間,溶氧無明顯分層,但溶氧偏低,在漲潮時全水層的溶氧低於3ppm,退潮時甚至降至1ppm以下。夏、冬兩季底泥表面的耗氧速率分別為9±6mg/m2/min (水溫26℃)、5±5 mg/m2/min (水溫19℃)。湧升柱Ⅲ型的標準曝氣效率為1.50 kgO2/kw/hr,揚升水量約621~629ml。Ⅲ型應用於緩流水域,攪水能力範圍可達3公尺,出水口處的增氧能力約0.86mg/l,耗電成本為0.38元/mgO2/l/hr。高雄愛河曝氣船,出水口處的增氧能力約1.8mg/l,耗電成本為6.99元/mgO2/l/hr。 比較本研究間接增氧式湧升柱與連續增氧式曝氣船工法,對河川水質改善增氧及擴散能力的成效可知,在節能與效率、經濟等方面,間接增氧方式應優於連續增氧方式。因此,湧升柱應可作為河川增氧物理工法的方法之一。The dissolved oxygen(DO)is nearly none at the bottom of water at the midstream of Tanshui river. Therefore, this study is applying an air-lift column to deal with low DO condition of water and investigating hydraulic characteristic of Dadaocheng Basin as air-lift column design reference resources. In this study, the air-lift column is a low energy costing and intermittently operating device which can mix different water layers. Field experiments in summer and winter are operated to measure the oxygen consumption rate of the sediment. And the air-lift column efficiency of the increased oxygen rate、the water mixing ability and the oxygen spread of ability are fast. Standard experiment of air-lift column is carried out in static state water. And compare the efficiency of the two types of column design. In addition, this study measures the increased oxygen efficiency and diffusive ability of the aeration boat to build up the database for river renovation.esults show DO below 3ppm and without-delaminating during the period of flood tide and only about 1ppm in the ebb tide in the Dadaocheng watershed. The oxygen consumption rate of the sediment are 9±6 mg/m2/min in summer (water temp. 26℃) and 5±5 mg/m2/min in winter (water temp. 19℃). The standard aeration efficiency (SAE) of air-lift column is 1.50 kgO2/kw/hr, up-welled water volume is 621~629 ml. when it is applied to the low speed flow watershed, the agitated range is about 3 m、the increased oxygen rate at the outlet is 0.86mg/l and the electric cost is 0.38 NT dollar/mgO2/l/hour. The increased oxygen rate of the aeration boat in Kaohsiung is 1.8mg/l and electric cost is 6.99 NT dollar/mgO2/lhour. omparing water quality improvement ability and the oxygen spread of ability between indirect oxygen increasing air-lift column and continuous aeration boat, indirect oxygen increasing method has better performance than continuous oxygen increasing method. To sum up, the air-lift column can be one of the physics methods to effect oxygen increasing.學位考試委員審定書 i謝 ii文摘要 iii文摘要 iv錄 vi目錄 ix 目錄 xi一章 前言 1.1 研究緣起 1.2 研究內容及目的 1二章 文獻探討 3.1 研究區域概述 3.2 河川水體淨化工法 5.2.1淨化工法分類 5.2.2物理性水質改善設備簡介 9.2.3國內外以物理性工法整治河川案例 15.3 河川底泥耗氧速率理論 202.3.1量測法理論 202.3.2淡水河系底泥耗氧速率 22.4 設備增氧效率理論 25 2.4.1總體氧氣質傳係數 25 2.4.2溶氧傳遞效率相關係數 26三章 材料與方法 27.1 大稻埕水域水理及溶氧分層調查 28.1.1使用材料與設備 28.1.2試驗方法 28.2 大稻埕水域底泥耗氧速率試驗 29.2.1使用材料與設備 30.2.2試驗方法 31.3 湧升柱效率試驗 31.3.1使用材料與設備 31.3.2設備效率標準試驗(無流速影響水區) 35 1.交換上下水層水量試驗 35 2.增氧效率試驗 35.3.3設備效率現地試驗 36 1.受流速影響水區的增氧效率試驗 36 2.無流速影響水區的交換水量能力試驗 37.4 高雄愛河中游的溶氧分層及曝氣船效率實測試驗 37.5 資料分析方法 38.5.1底泥耗氧速率 39.5.2湧升柱交換上下水層水量能力 40.5.3湧升柱增氧效率 40四章 結果與討論 42.1 大稻埕水域水理及溶氧特徵 42.2 大稻埕水域底泥耗氧速率 47.3 湧升柱交換上下水層水量及增氧效率 48 1.受流速影響水區現地實驗結果 48 2.未受流速影響水區現地實驗結果 49.4 湧升柱交換上下水層水量標準試驗結果 51.5 湧升柱增氧效率標準試驗結果 53.6 高雄愛河中游的溶氧分層特徵及曝氣船效率試驗結果 544.6.1愛河中游的溶氧分層特徵 544.6.2曝氣船連續開啟對水體分層的增氧能力 554.6.3曝氣船出水口處對水體的增氧能力 58.7 湧升柱與曝氣船的效率與經濟分析 59五章 結論與建議 60 5.1 結論 60 5.1.1大稻埕水域水理水質特徵 60 5.1.2大稻埕水域底泥耗氧速率 60 5.1.3湧升柱對大稻埕水域設備效率 60 5.1.4高雄愛河中游溶氧分層特徵及曝氣船效率 61.2 建議 61六章 參考文獻 62錄1 湧升柱增氧標準試驗結果application/pdf1412088 bytesapplication/pdfen-US湧升柱底泥耗氧速率增氧工法水質改善溶氧air-lift columnoxygen consumption rate of the sedimentoxygen increased methodwater quality improvementdissolved oxygen.感潮河川的溶氧分層特徵與增氧設備效率研究以淡水河中游大稻埕與愛河中游水區為例-The Characteristics of Stratified Dissolved Oxygen and the Aeration Efficiency at the Midstream of Tanshui River and the Lover Riverthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/181126/1/ntu-97-R94622047-1.pdf