戴子安臺灣大學:化學工程學研究所吳俊慶Wu, Chun-ChingChun-ChingWu2010-06-302018-06-282010-06-302018-06-282008U0001-1907200811434000http://ntur.lib.ntu.edu.tw//handle/246246/186916用格林鈉反應(Grignard Reaction)原理為基礎,然後以鎳(Ni)的錯合物當作觸媒合成出一系列同時具有烷基和烷氧基側鏈的噻吩共聚物(P3HT-P3HOT),接著利用觸媒與分子量的關係實驗,發現共聚物由於受到了溶解度的影響,觸媒與分子量的相關性只限於某個分子量之內,而過了此分子量之值後,減少觸媒的量將再也不能提高共聚物的分子量。此外,我們也利用對於兩個單體不同的進料比例與實際比例實驗中,發現不管在任何不同比例下,烷氧基的噻吩的實際比例皆高於進料比例6~10%。後來再更進一步的實驗中,發現原來是因為烷氧基噻吩再形成格林納反應中間物時,具有比較好的化學選擇性,可以在反應時產生較多的可聚合中間物,而造成這個現象。最後我們利用了共聚合公式,將我們的實驗結果回推我們的反應係數,得到r1為1.2,r2為0.8,r1r2的乘積為0.96,得到此反應屬於一個高度隨機共聚合的行為(random copolymerization),而不是交互共聚合(alternating copolymerization)或是塊狀共聚合(block copolymerization)。最後我們將不同比例的烷機和烷氧基側鏈的噻吩共聚物(P3HT-P3HOT)進行紫外-可見光光譜(UV-vis)、螢光光譜(PL)、熱裂解分析(TGA).循環伏安法(CV)、X光散射(XRD)和元件測試,元件效率等一系列的光電性質以及熱性質測試,發覺當烷氧基側鏈的噻吩在共聚物中比例增加時,光譜吸收會產生紅移的現象,再配合循環伏安法的測試,發覺加入烷氧基側鏈的噻吩會使其最高填滿軌域(HOMO)上升,整體能隙(band gap)下降,也了解到可以藉由控制烷氧基側鏈的噻吩在共聚物的內部比例來控制其最高填滿軌域以及能隙。此外我們發現由於烷氧基較易被氧化的關係,加入含烷氧基側鏈的噻吩會使熱穩定性變差,且經由X光散射的實驗發現加入烷氧基側鏈的噻吩會使整體的結晶性下降,最後,我們將此材料應用於太陽能電池中的活性層上面,發覺雖然降低能隙可以使原件吸收更多的光子,但由於最高填滿軌域的上升,造成元件的開路電壓(Voc)下降而影響元件的效率。Poly(3-hexylthiophene-co-3-hexyloxythiophene) (P3HT-P3HOT) was synthesized using Grignard reaction, and confirm the inert structure by H NMR. And we do a series of experiments about the relationship of catalyst and molecular weight to study the mechanism of copolymerization, due to the effect of solubility, we find that the copolymerization only obey the GRIM chain-growth phenomenon below certain molecular weight, after is number the molecular won’t grow up even you reduce the amount of catalyst. And we find the real ratio of 3-alkoxythiophene is always 6~10% higher than feed ratio in different molar fraction of comonomer experiment. And we assume the phenomenon is because of the 3-alkoxythiophene has well degree of regiocontrol than 3-alkylthiophene. That is, 3-alkoxythiophene will form more react Grignard intermediate than 3-alkylthiophene. And we also use copolymerization equation and our result to calculate the monomer reactivity ratios r1 and r2, and r1 is equal to 1.2 and r2 is equal to 0.8, the multiple of r1 and r2 is equal to 0.96, indirectly prove the copolymerization is a random copolymerization rather than alternating or block copolymerization. We choose five different fraction of copolymers and detect in UV-vis, photoluminescenece(PL), cyclic voltammetry(CV), thermal gravimetric analysis(TGA), X-ray diffraction(XRD) and solar device. And when we add alkoxythiophene into our copolymer, it will be red shift in optical absorption because of the electro-donation property of alkoxythiophene, and the highest occupied molecule orbital (HOMO) increase and the band gap decrease when we increase the mole fraction of alkoxythiophene, in other words, we can control the HOMO and the band gap by controlling the mole fraction of alkoxythiophene. In TGA test of thermal stability, because the alkoxy is more oxidize, the thermal stability become worse when we increase the mole fraction of alkoxythiophene, and also the crystallinity in the copolymers. Finally , we use the copolymers on the active layer of the organic solar cell, due to the reason of HOMO increasing, the Voc become smaller and lower the efficiency.Indexhapter 1 General introduction 1.1 The origin of semiconducting behavior[6] 1.2 History and synthesis of Poly(alkyl-thiophene) 4.3 Configuration of Poly(alkyl-thiophene) 5.4 Mechanism of the Nickel-Initiated Grignard reaction 8.5 Photovoltatic properties of poly(3-alkyl thiophene) 10.6 Working principles of organic solar cell[6] 11.7 Solar cell performance of P3HT-PCBM bulk heterojunction system 14.8 Development on poly(3-alkoxythiophene) 16.9 Development on poly(alkoxythiophene-co-alkylthiophene ) 17hapter 2 Experimental Part 19.1 Experiment materials 19.2 Experiment instrument 20.3 Synthesis of 3-hexylthophene 21.4 Synthesis of 2,5-dibromo-3-hexylthiophene . 22.5 Synthesis of 3-hexyloxythiophene 23.6 Synthesis of 2,5-dibromo-3-hexyloxythiophene . 24.7 Synthesis of poly(-3-hexylthiophene)-co-poly (-3-hexyloxy thiophene) by the Grignard Metathesis method. 25.8 Experiment in the different feed ratio of 2,5,Br-3HOT and add the same molar ratio of catalyst. 26.9 Experiment of different molar ratio of catalyst in equal molar fraction of two monomers system (P3HT-P3HOT[5:5]) 27.10 Quenching result of Grignard metathesis reaction of 2,5,dibromo-3-hexylthiophene and 2,5,dibromo-3-hexyloxythiophene 28hapter 3 Result and discussion 30.1 Synthesis of 3-hexylthophene 30.2 Synthesis of 2,5-dibromo-3-hexylthiophene . 30.3 Synthesis of 3-hexyloxythiophene 31.4 Synthesis of 2,5-dibromo-3-hexyloxythiophene . 31.5 Experiment in the different feed ratio of 2,5,Br-3HOT and add the same molar ratio of catalyst. 31.6 Experiment of different molar ratio of catalyst in equal molar fraction of two monomers system (P3HT-P3HOT[5:5]) 32.7 Quenching experiment of Grignard metathesis reaction of 2,5,dibromo-3-hexylthiophene and 2,5,dibromo-3-hexyloxythiophene 35.8 Adjustment of the ideal molecular calculation in P3HT-P3HOT[5:5] system based on the quenching experiments 36.9 Mechanism prediction of P3HT-P3HOT[5:5] system 37.10 Calculation of the reactivity ratio in 2,5,Br-3-HT and 2,5,Br-3- HOT copolymerization base on the copolymerization equation 38.11 Characteristic of five different molar fraction of P3HT-P3HOT 40.12 Appearance 40.13 UV-Visible Absorption of P3HT-P3HOT in different molar fraction 41.14 Electrochemical Characterization of P3HT-P3HOT in different molar fraction 42.15 X-ray diffraction (XRD) of P3HT-P3HOT in different molar fraction 44.16 Thermal analysis (TGA) 45.17 FT IR 46.18 Organic solar cell performance 47hapter4 Conclusion 48hapter5 Reference 50able indexable2.1 Experiment in the different feed ratio of 2,5,Br-3HOT and add the same molar ratio of catalyst. 81able 2.2 Experiment of different molar ratio of catalyst in equal molar fraction of two monomers system 82able 3.1 Summary of five different molar fraction of 3-HT and 3-HOT experiment 83able 3.2 Summary of the different ratio of monomer to Ni(dppp)Cl2 experiment results in equal molar fraction of 3HT and 3HOT system(P3HT-P3HOT[5:5]) 84able 3.3 Photovoltaic and thermal properties of five different molar fraction of 3-HT and 3-HOT copolymer 85able 3.4 X-ray diffraction 2θpositions and calculated d spacing of P3HT-P3HOT 86able 3.5 Summary of P3HT-P3HOT/PCBM bulk heterojunction solar cell performance 87able 3.6 All experiments of the relationship between mole percentage and derived Mn 88igure indexigure 3.1 H NMR of 3-hexyl thiophene 53igure 3.2 H NMR of 2,5,dibromo-3-hexyl thiophene 54igure 3.3 H NMR of 3-hexyloxy thiophene 55igure 3.4 H NMR of 2,5,dibromo-3-hexyloxy thiophene 56igure 3.5 H NMR of poly(3-hexyl thiophene 57igure 3.6 H NMR of poly(3-hexyl thiophene)-co-poly(3-hexyloxy thiophene) Feed ratio: 7:3 58igure 3.7 H NMR of poly(3-hexyl thiophene)-co-poly(3-hexyloxy thiophene) Feed ratio: 5:5 59igure 3.8 H NMR of poly(3-hexyl thiophene)-co-poly(3-hexyloxy thiophene) Feed ratio: 3:7 60igure 3.9 H NMR of poly(3-hexyloxy thiophene) 61igure 3.10 Different ratio of monomer to Ni(dppp)Cl2 results in equal molar of 3HT and 3HOT system(P3HT-P3HOT[5:5]) 62igure 3.11 Five GPC peak of different ratio of monomer to Ni(dppp)Cl2 results in equal molar of 3HT and 3HOT system(P3HT-P3HOT[5:5]) 63igure 3.12 The relationship of Mn and [monomer]/[Ni(dppp)Cl2] in different molar ratio of P3HT-P3HOT 64igure 3.13 Quenching result of Grignard metathesis reaction of 3-hexylthiophene 65igure 3.14 Quenching result of Grignard metathesis reaction of 3-hexyloxythiophene. 66igure 3.15 Different ratio of monomer to Ni(dppp)Cl2 results in equal molar of 3HT and 3HOT system(P3HT-P3HOT[5:5]) 67igure 3.16 Mechanism prediction of equal molar of 3-HT and 3-HOT copolymerization(P3HT-P3HOT[5:5] 68igure 3.17 The relationship between the molar fraction of 3-HOT in comonomer feed(f1) and the molar fraction of 3-HOT in copolymer(F1) 69igure 3.18 Outlook of five different molar fraction of P3HT-P3HOT, from left to right are (a)P3HOT, (b)P3HT-P3HOT[3:7], (c)P3HT-P3HOT[5:5], (d)P3HT-P3HOT[7:3], (e)P3HT respectively 70igure 3.19 UV-absorption of five copolymers in chloroform solution 71igure 3.20 UV-absorption of five copolymers in thin film state 72igure 3.21 X-ray diffraction patterns of five polymer films cast from chloroform solutions 73igure 3.22 (a) simulate arrangement inside P3HT 74igure 3.23 TGA curve of five polymer 75igure 3.24 Cyclic voltammograms diagram(CV) of five different molar fraction of P3HT-P3HOT(A)P3HOT (B)P3HT-P3HOT[3:7] (C)P3HT-P3HOT[5:5] (D)P3HT-P3HOT[7:3] (E)P3HT 76igure3.25 Energy-level diagram of five different molar fraction of P3HT-P3HOT 77igure 3.26 FT-IR of five different molar fraction of P3HT-P3HOT 78igure 3.27 The current-voltage characteristics of a P3HT-P3HOT/PCBM bulk heterojunction solar cell 79igure 3.28 UV-vis of five different molar fraction of P3HT-P3HOT blend with PCBM in equal mole 802202377 bytesapplication/pdfen-US烷基烷氧基噻吩共聚物隨機共聚合低能隙共聚物推電子性質高分子Poly(3-hexylthiophene-co-3-hexyloxythiophene)P3HT-P3HOTGrignard reactionrandom copolymeralkoxy-substituted thiophenelow band gap copolymer己烷噻吩-己烷氧噻吩共聚物(P3HT-P3HOT)之合成機制探討與性質鑑定Synthesis, Characterization and Mechanism Investigation of Poly(3-hexylthiophene-co-3-hexyloxythiophene) via Grignard Metathesis.thesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/186916/1/ntu-97-R95524079-1.pdf