陳希立臺灣大學:機械工程學研究所周文豪Chow, Mun-HoMun-HoChow2007-11-282018-06-282007-11-282018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/61573隨著電腦性能不斷的提升,中央處理器、顯示晶片及其它晶片組的運作時脈提高,伴隨產生的熱量卻因為方便性及潮流,機殼設計比以前更輕巧縮小,使得系統散熱條件變得更嚴苛。本研究之主要目的在使用Icepak熱傳分析軟體對嵌入式熱管散熱模組進行模擬分析,目標在達到理想的發熱源溫度。首先,進行實驗以驗證Icepak熱傳分析軟體的準確性。實驗與數值模擬之發熱源溫度最大誤差為2.78%、總熱阻最大誤差為2.71%。故得到之實驗與數值模擬之趨勢及結果相當符合,驗證了Icepak在熱分析上之準確性。 分析結果顯示,考慮熱管冷凝端水平之間距,其間距為61.32mm時,其散熱性能最好。另外,熱管冷凝端與散熱鰭片底部距離為26mm時,其散熱性能最好。就熱管蒸發端而言,熱管蒸發端間距為8mm時,,其散熱性能最好。增加熱管數量亦能有效的降低發熱源溫度及總熱阻,與Type B散熱模組相比,其總熱阻最大可降低約10.69%。With the computer function continuously enhanced, the frequency of CPU, VGA chips and the other chips set are also raised. However, the hot condition becomes more rigorous because the design of machine hull is more agile than past to follow the convenience and trend. The main purpose of this research is to adopt the Icepak to carry on the simulation and the analysis to the heat pipe-fin modules. The target is to reach the ideal CPU temperature. First, we have an experiment to identify the accuracy of Icepak. The temperature’s maximum error between CPU of simulation and the experiment is 2.78% and the maximum error margin of thermal resistance is about 2.71%. The trend of simulation is consistent with the result of the experiment, which proofs Icepak in the accuracy of the thermal analysis. According to the analysis of the result, it shows that when considering the vertical interval in heat pipe condenser section is 61.32mm, the thermal performance is better. Besides, as the heat pipe condenser section is 26mm, its thermal performance is better to the others. As for the evaporator section, while the interval in evaporator section is 8mm, the better the thermal performance. Increasing the number of heat pipes also can reduce the temperature of CPU and the thermal resistance. Compared with Type B module, its total thermal resistance can at least reduce about 10.69%.摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 符號說明 xi 第一章 緒論 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 3 1-4 文獻回顧 3 第二章 理論基礎 2-1 熱管工作原理 6 2-2 熱阻之定義 7 第三章 實驗方法與設備 3-1 實驗方法 10 3-2 實驗設備 10 3-2-1 電源供應器 10 3-2-2 熱電偶 11 3-2-3 數據記錄器 11 3-2-4 固定夾具 11 3-3 實驗模型 11 3-3-1 發熱源 12 3-3-2 熱管 12 3-3-3 冷卻風扇 13 3-4 實驗參數 13 3-5 實驗步驟 13 3-6 誤差分析 14 第四章 數值模擬 4-1 計算流體力學軟體簡介 15 4-2 熱流分析軟體Icepak簡介 16 4-3 數值分析理論 17 4-3-1 統御方程式 18 4-3-2 有限體積法 19 4-4 數值模擬流程 22 4-4-1 前處理 22 4-4-2 條件之定義及求解 22 4-4-3 後處理 23 第五章 結果與討論 5-1 實驗結果與討論 24 5-2 數值模擬結果與討論 26 5-2-1 網格數與收斂條件之討論 26 5-2-2 數值模擬結果與實驗結果之比較 27 5-3 散熱模組元件之探討 32 5-3-1 變動熱管冷凝端位置 33 5-3-2 變動熱管蒸發端位置 35 5-3-3 增加熱管數量 36 5-3-4 鰭片之溫度分佈 37 第六章 結論與建議 6-1 結論 39 6-2 建議 40 參考文獻 422124857 bytesapplication/pdfen-US熱管數值模擬Heat PipeIcepakCFD嵌入式熱管散熱模組之實驗測試與數值分析Experimental and Numerical Investigations of Thermal Performance in Heat Sink with Embedded Heat Pipesthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61573/1/ntu-94-R92522108-1.pdf