郭震坤臺灣大學:國際企業學研究所倪于清Ni, Yu-ChinYu-ChinNi2007-11-282018-06-292007-11-282018-06-292006http://ntur.lib.ntu.edu.tw//handle/246246/60348近年來我國金融業在積極追求最大獲利之外,對於風險管理的課題也極為重視。而在風險管理系統的建構中,準確的評估風險值或極端風險值為重要的工作之一。本研究的目的為探討不同模型計算風險值和極端風險值的方法,經由風險測度信賴區間的建立,評估不同模型對於事前估計的誤差程度。本文應用GARCH建立動態變異數模型,並且分別對常態分配和t分配計算Hill、FHS、GCCF三種估計值,再用拔靴法來評估風險值和極端風險值預測的準確性。由模擬資料分析可知,FHS和Hill對於風險值和極端風險值的預測準確性較高,此結果在實務上應有相當參考價值。Recently, the financial industry in Taiwan increasingly uses Value-at-Risk (VaR) in portfolio risk management, risk capital allocation and performance attribution. Risk managers are rightfully concerned with the precision of VaR and the related expected shortfall (ES) techniques. The purposes of this thesis are to estimate the predicating accuracy of VaR and ES computed by different models, and to assess the ex ante magnitude of the error through the construction of confidence intervals around the VaR and ES measures. We apply GARCH to build dynamic variation models, and use normal and t distributions to construct the Hill, FHS, and GCCF estimators. Then, the bootstrap method is used to assess the predicating accuracy of VaR and ES. Finally, by analyzing simulated data, we conclude the FHS and Hill estimators have the higher predicating accuracy in estimating VaR and ES. The result should be useful in practice.目 錄 誌 謝 2 摘 要 3 Abstract 4 第一章 前言 10 1.1 研究背景 10 1.2 研究動機 10 1.3 研究目的 11 第二章 文獻回顧 12 2.1 風險值(Value-At-Risk) 12 2.1.1 風險值的起源 12 2.1.2 風險值的定義 13 2.1.3 風險值的特點 16 2.2 風險值估算方法 17 2.2.1 變異數—共變數法 17 2.2.2 歷史模擬法(Historical Simulation) 18 2.2.3 蒙地卡羅模擬法(Monte Carlo Method) 19 2.2.4 極值估計法(Extreme Value Estimation) 20 2.3 極端風險值(Expected Shortfall) 22 2.3.1 極端風險值的定義 22 2.3.2 極端風險值具有凸性(convex) 23 2.3.3 極端風險值為連貫性風險衡量指標 24 第三章 模型以及研究方法 26 3.1 模型架構 26 3.1.1 風險值 26 3.1.2 極端風險值 27 3.1.3 為常態分配 28 3.1.4 為t分配 29 3.2 模擬法 32 3.3 GARCH(1,1) 32 3.3.1 常態條件分配(Normal conditional distribution ) 34 3.3.2 t條件分配(t conditional distribution ) 35 3.3.3 無參數方法(Non-parameter methods) 35 3.3.3.1 極值理論(Extreme value theory, EVT) 36 3.3.3.2 Gram-Charlier and Cornish-Fisher Expansions 43 3.3.3.3 Filtered historical simulation (FHS) 45 第四章 研究步驟與結果分析 47 4.1 應用拔靴法(bootstrap method)作無條件變異數的模擬風險測度 47 4.1.1 研究步驟 48 4.1.2 風險值和極端風險值預測結果分析 49 4.2 應用拔靴法作GARCH模型風險測度 52 4.2.1 研究步驟 52 4.2.2 GARCH DGP 56 4.2.3 Hill門檻估計值 56 4.2.4 風險值和極端風險值預測結果分析 57 4.2.4.1 Benchmark 57 4.2.4.2 Low Persistence 58 4.2.4.3 High Persistence 59 第五章 結論 73 附錄一 The Student t Distribution 78 附錄二 Hill估計值 84 圖 1 HILL估計值:T 分配下的風險值(T=500),BENCHMARK。 84 圖 2 HILL估計值:T 分配下的極端風險值(T=500),BENCHMARK。 85 圖 3 HILL估計值:T 分配下的風險值(T=1000),BENCHMARK。 86 圖 4 HILL估計值:T 分配下的極端風險值(T=1000), BENCHMARK。 87 圖 5 HILL估計值:常態分配下的風險值(T=500),BENCHMARK。 88 圖 6 HILL估計值:常態分配下的極端風險值(T=500),BENCHMARK。 89 圖 7 HILL估計值:常態分配下的風險值(T=1000),BENCHMARK。 90 圖 8 HILL估計值:常態分配下的極端風險值(T=1000), BENCHMARK。 91 圖 9 HILL估計值:T分配下的風險值(T=500),LOWER PERSISTENCE。 92 圖 10 HILL估計值:T分配下的極端風險值(T=500),LOWER PERSISTENCE。 93 圖 11 HILL估計值:T分配下的風險值(T=1000),LOWER PERSISTENCE。 94 圖 12 HILL估計值:T分配下的極端風險值(T=1000),LOWER PERSISTENCE。 95 圖 13 HILL估計值:常態分配下的風險值(T=500),LOW PERSISTENCE。 96 圖 14 HILL估計值:常態分配下的極端風險值(T=500),LOW PERSISTENCE。 97 圖 15 HILL估計值:常態分配下的風險值(T=1000),LOW PERSISTENCE。 98 圖 16 HILL估計值:常態分配下的極端風險值(T=1000),LOW PERSISTENCE。 99 圖 17 HILL估計值:T分配下的風險值(T=500),HIGH PERSISTENCE。 100 圖 18 HILL估計值:T分配下的極端風險值(T=500),HIGH PERSISTENCE。 101 圖 19 HILL估計值:T分配下的風險值(T=1000),HIGH PERSISTENCE。 102 圖 20 HILL估計值:T分配下的極端風險值(T=1000),HIGH PERSISTENCE。 103 圖 21 HILL估計值:常態分配下的風險值(T=500),HIGH PERSISTENCE。 104 圖 22 HILL估計值:常態分配下的極端風險值(T=500),HIGH PERSISTENCE。 105 圖 23 HILL估計值:常態分配下的風險值(T=1000),HIGH PERSISTENCE。 106 圖 24 HILL估計值:常態分配下的極端風險值(T=1000),HIGH PERSISTENCE。 107 參考文獻 108 圖 目 錄 圖2- 1 風險值示意圖 14 圖5- 1 模擬隨機變數ND(0,1) 77 圖5- 2 模擬隨機變數T(0,8/6) 77 表 目 錄 表4- 1 獨立損失—模擬法(1%的風險值和極端風險值,信賴區間90%) 51 表4- 2 GARCH (T分配,D=8) BENCHMARK(1%的風險值和極端風險值,信賴區間90%,HILL估計值1%) 61 表4- 3 GARCH (T分配,D=8) LOW PERSISTENCE(1%的風險值和極端風險值,信賴區間90%,HILL估計值1%) 62 表4- 4 GARCH (T分配,D=8) HIGH PERSISTENCE(1%的風險值和極端風險值,信賴區間 90%,HILL估計值1%) 63 表4- 5 GARCH (常態分配 ) BENCHMARK(1%的風險值和極端風險值,信賴區間90%,HILL門估計值1%) 64 表4- 6 GARCH (常態分配) LOW PERSISTENCE(1%的風險值和極端風險值,信賴區間90%,HILL估計值1%) 65 表4- 7 GARCH (常態分配) HIGH PERSISTENCE(1%的風險值和極端風險值,信賴區間90%,HILL估計值1%) 66 表4- 8 GARCH (T分配,D=8) BENCHMARK(1%的風險值和極端風險值,信賴區間90%,HILL估計值2%) 67 表4- 9 GARCH (T分配,D=8) LOW PERSISTENCE(1%的風險值和極端風險值,信賴區間90%,HILL估計值2%) 68 表4- 10 GARCH (T分配,D=8) HIGH PERSISTENCE(1%的風險值和極端風險值,信賴區間90%,HILL估計值2%) 69 表4- 11 GARCH (常態分配) BENCHMARK(1%的風險值和極端風險值,信賴區間90%,HILL 估計值2%) 70 表4- 12 GARCH (常態分配) LOW PERSISTENCE(1%的風險值和極端風險值,信賴區間90%,HILL估計值2%) 71 表4- 13 GARCH (常態分配) HIGH PERSISTENCE(1%的風險值和極端風險值,信賴區間90%,HILL估計值2%) 72 表5- 1 風險值預測結果最小值統整 75 表5- 2 極端風險值預測結果最小值統整 76648857 bytesapplication/pdfen-US極端風險值GARCH拔靴法Expected shortfallBootstrap method不同風險值模型預測的準確性之評估Assessing the Predicting Accuracy of Different Value-at-Risk Modelthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/60348/1/ntu-95-R93724078-1.pdf