工學院: 應用力學研究所指導教授: 翁宗賢魏鈺霖Wei, Yu-LinYu-LinWei2017-03-062018-06-292017-03-062018-06-292016http://ntur.lib.ntu.edu.tw//handle/246246/276888本研究旨在研製微型壓力感測器,可精準量測0 ~1 bar的壓力,具高線性度及高敏感度,解析度為0.014 bar,亦即1.4%。首先以電腦輔助計算軟體模擬驗證壓阻式半島結構的方型隔膜承受壓力的響應與壓阻變化,然後以微機電製程製作微型壓力感測器。傳統製作壓阻式壓力感測器是在結構應變的最大處嵌入壓阻器,本文則使用SOI晶圓當基材製作,最上方的組件層選用適當的離子摻雜濃度,並在薄膜邊緣中心處設計壓阻器的結構,即可省去許多製程的步驟與費用;感測壓力的隔膜結構上表面則貼附半島型的薄膜,可以有效提高感測器的敏感度與線性度;隔膜上方的壓阻器以佈線方式組成惠斯登電橋,將壓力引致的應變訊號轉換為電壓訊號輸出。 本文設計的壓力感測器尺寸為5 6 mm2,且設計5組不同隔膜面積與壓阻器的壓力計,薄膜面積分別有1500 1500 m2、1900 1900 m2及2300 2300 m2,壓阻器的厚度固定為20 m,截面尺寸則有70 15 m2、100 25 m2及110 20 m2。運用數值模擬的方式,分析最大應力產生的位置及數值,避免響應應力超過材料的安全設計強度範圍,導致結構損壞;最後再將壓阻器的應變轉換成電訊號輸出,並預估壓力感測敏感度。完成設計與模擬驗證的感測器,接著以深蝕刻等半導體技術製作壓阻器、隔膜構型與感測壓力艙,然後將感測晶片封裝至設計加工的M10螺絲頭內,鎖至穩定的壓力管,並結合數位化電路進行測試實驗。 本文所研製的微型壓力感測器經測試後,量測數據經迴歸後得出最佳敏感度為34.57 mV/V/bar,最佳線性度為0.71 % FS。敏感度也可由校準的數位電路調整放大倍率,方便不同需求的應用。本文所研製的微壓器皆可耐壓3 bar的壓力,結構完整,並可繼續使用無虞。 本項微型壓力感測器研製與測試後,可整合運用於空中飛行體或水中載具系統,亦可應用於一般環境的壓力量測。由於模組是以半導體製程研製,可以批次作業量產,單位成本遠低於以傳統機械加工方式製作的產品。再者,由於壓力感測器的體積小,質量輕,因此可縮減構裝尺寸,且更耐衝擊。本文研究未來可進行不同構型設計的模擬與測試,歸納簡化出一套數學公式,將欲獲得的敏感度與量測範圍代入即可獲得適合的晶片設計參數,降低製程的門檻,也簡化開發流程,以配合各種不同的需求來製作不同規格的壓力感測器,增加微型壓力感測器的應用領域。This thesis was devoted to the development of micro pressure sensors which can measure 0-1 bar with high linearity and high sensitivity at a resolution of 0.014 bar or 1.4%. To acquire a better design, the finite element method was employed to analyze the stress distribution of the square sensing diaphragm with four peninsula-structure bosses attached to the four central edges. Conventional piezoresistors are embedded by doping process at the positions of maximum stresses responding to the applied pressure, the present study fabricated the isolated piezoresistors by removing the excessive material of the device layer which was properly doped in a SOI wafer. This design would improve the sensitivity and linearity of the sensor, while reduce fabrication processes. Two piezoresistors in each sensor were connected with two dummy resistors on the metal lines to form a Wheatstone bridge. It can convert the unbalanced signal of the piezoresistors resulted from the deformed diaphragm where the pressure force was applied. Five models involving three sizes in square diaphragm and three sizes in piezoresistor were designed for numerical simulation coupling mechanical and electrical fields. The results of simulation indicate that the maximum stresses occur at the centers of the edges of the diaphragm. It also provides sufficient information to validate that the respondent stresses are within the allowable strength of material and significant voltage output from the Wheatstone bridge constructed by the piezoresistors for accurate measurement. The modules were fabricated on a silicon-on-insulator wafer by semiconductor manufacturing processes. Upon finishing the manufacturing, cutting, and packaging processes, detail calibrations were carried out to characterize sensitivity and linearity of pressure sensor. Two pressure sensors for each five models were tested and calibriated at the room temperature. All sensors demonstrate satisfactory performances in sensitivity and linearity in the test pressure range. The best sensor exhibits a sensitivity of 34.57 mV/V/bar and linearity in the order of 0.71 % per full scale output. The sensitivity of sensors can be amplified to 100 mV/V/bar by inserting a tuned resistor to the instrumentation amplifier for convenient applications. The developed modular micro pressure sensor can be integrated into modern transportation vehicles as well as for general measurements. Since the MENS processing is compatible with the CMOS manufacturing, the present micro pressure sensing module can be integrated with the other electric control circuits.2005590 bytesapplication/pdf論文公開時間: 2017/9/13論文使用權限: 同意有償授權(權利金給回饋本人)微型壓力計壓阻器島型結構微機電系統micro pressure sensorpiezoresistorpeninsula-structuredMENS壓阻式半島結構微型壓力感測器之研發Development of Peninsula-Structured Diaphragm for Micro Piezo-Resistive Pressure sensorthesis10.6342/NTU201600944http://ntur.lib.ntu.edu.tw/bitstream/246246/276888/1/ntu-105-R03543084-1.pdf