顧鈞豪臺灣大學:材料科學與工程學研究所陳世偉Chen, Shi-WeiShi-WeiChen2007-11-262018-06-282007-11-262018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/55199本研究係利用三明治結構設計(ITO-Metal-ITO, IMI),製備低電阻、高透光度之透明導電薄膜,而以極薄的銀薄膜(10 nm)作為三明治透明導電薄膜的中間金屬層。三明治透明導電薄膜的導電度比單層ITO薄膜高了一個級數,可以取代ITO做為光電元件透明電極之應用。但是即使有表層ITO的保護,極薄的純銀薄膜仍然相當不穩定,在高溫或高濕度的環境中,容易發生團聚,導致三明治透明導電薄膜的導電度、透光度以及耐候性下降。因此本研究針對銀金屬層進行合金化設計,成功開發銀鈦、銀鈦銅合金,作為三明治透明導電薄膜的中間金屬層。藉由合金元素的添加,並且以固溶的形式存在,可增加銀薄膜表面結構的穩定性。並且藉由改變基板溫度、耐候性研究以及退火處理,解析銀金屬層合金化後,合金元素對銀金屬層以及IMI薄膜性質的影響行為。結果發現,固溶鈦元素的添加,可以有效穩定銀薄膜結構,抑制薄膜沈積時因為應變能釋放所導致的粗化現象,幫助銀薄膜形成層狀附著於ITO基板上;亦可抑制濕氣滲入IMI薄膜結構中所誘發的銀薄膜團聚行為;並且可以抑制高溫大氣退火時,銀/ITO薄膜發生交互擴散。如此,ITO-AgTi-ITO以及ITO-AgTiCu-ITO薄膜可具有穩定且優異的導電、透光以及耐候性。經過適當的退火處理過後,ITO-AgTiCu-ITO薄膜的透光度可提升到91.08 %,電阻率可下降至4.66 x 10-5 Ω.cm。ITO-AgTiCu-ITO薄膜的透光度與單層ITO薄膜相當,電阻率比ITO低了一個級數,並且具有優異的耐候性,相當適合取代單層ITO薄膜,應用作為光電元件的透明電極,可大幅提昇元件效率。Using ITO-Metal-ITO (IMI) multilayer structures is the simplest and most effective way to improve the characteristics of the transparent conductive oxide (TCO). The IMI structures have quit low sheet resistance comparing with the single-layer TCO films, such as ITO, although their transmittance is slightly lower than ITO. The characteristics of IMI films strongly depend on the intermediate layer. Silver is the best intermediate layer of IMI films, because it has higher transparency and conductivity than other metals when the film is very thin. However, pure silver films are unstable and easy to agglomerate at a high temperature. An increase in roughness will reduce the conductivity and transparency of IMI films. This study proposes to increase the stability of the Ag layer by alloying with doped Ti or Cu atoms, consequently, to increase the stability of the IMI films. Furthermore, the effect of the doping elements on the silver layer as well as the IMI film is also investigated through varying the deposition temperature, durability testing and annealing. The results indicate that, by the addition of the doping Ti atoms, the roughening of the silver film due to the relaxation of strain energy as deposition can be retarded; the agglomeration of the silver film induced by the moisture penetration can be retarded; and the interdiffusion between the silver and ITO layers when the film is annealed at a high temperature in air can also be retaeded. Therefore, the Ag-Ti film owns smooth and stable surface morphology, the ITO-AgTi-ITO and the ITO-AgTiCu-ITO films keep high conductivity, transparency and excellent durability. After annealing, the ITO-AgTiCu-ITO film owns high transparency (transparency = 91.08 %, it is close to that of the single-layer ITO), quit low resistivity (resistivity = 4.66 x 10-5 Ω.cm, it is lower than that of the single-layer ITO about one order) and excellent durability. The ITO-AgTiCu-ITO film is suitable to replace the single-layer ITO film and be applied as the transparent electrode of the optic-electric devices.目錄.....................................................i圖目錄..................................................iv 表目錄...................................................x 中文摘要................................................xi 英文摘要...............................................xii 第一章 前言..............................................1 第二章 理論基礎與文獻回顧................................4 2.1 薄膜沈積.............................................4 2.1.1 成核理論...........................................8 2.1.2 薄膜成長模式......................................11 2.1.3 層狀+島狀成長模式的轉變...........................13 2.2 表面能量測計算......................................17 2.2.1 分子間作用力......................................17 2.2.2 表面能計算........................................23 2.3 透明導電薄膜發展演進................................24 2.3.1 金屬透明導電薄膜..................................24 2.3.2 氧化物透明導電薄膜................................25 2.3.3 氧化物透明導電薄膜的物理極限......................29 2.4 透明導電薄膜的應用..................................29 2.5 透明導電薄膜未來發展................................31 2.5.1 少量添加高價數溶質之透明導電薄膜..................31 2.5.2 多元氧化物透明導電薄膜............................32 2.5.3 添加銀之ITO薄膜...................................33 2.5.4 三明治結構之透明導電薄膜 (ITO-Metal-ITO, IMI )...................................36 2.6 IMI透明導電薄膜之耐候性.............................41 2.7 溫度與氣氛對純銀薄膜熱穩定性之影響..................42 第三章 實驗方法與設備...................................44 3.1 實驗流程圖..........................................44 3.2 薄膜濺鍍............................................45 3.3 退火................................................46 3.4 耐候性測試..........................................47 3.5 顯微結構觀察........................................47 3.6 相鑑定..............................................50 3.7 表面電阻量測........................................50 3.8 透光度量測..........................................51 3.9 薄膜縱深成分分佈之分析..............................52 3.10表面能計算以及接觸角量測............................53 第四章 ITO薄膜性質研究..................................55 4.1 濺鍍參數影響ITO薄膜電阻率...........................55 4.2 基板溫度影響ITO薄膜結晶、導電與透光性...............60 4.3 退火影響ITO薄膜結晶、導電與透光性...................64 第五章 不同基板加熱溫度對IMI薄膜性質之影響..............71 5.1 銀薄膜成長機制及表面粗糙度..........................71 5.2 基板溫度影響IMI薄膜結晶性...........................84 5.3 基板溫度影響IMI薄膜電阻率...........................92 5.4 基板溫度影響IMI薄膜透光率...........................95 第六章 IMI薄膜耐候性質之研究結果........................99 6.1 耐候性破壞機制......................................99 6.2 銀合金化對IMI薄膜耐候性的影響......................104 6.3 表層ITO潤濕性對IMI薄膜耐候性的影響.................105 第七章 退火對IMI薄膜性質之影響.........................112 7.1 大氣退火影響IMI薄膜電阻率..........................112 7.2 大氣退火影響IMI薄膜透光率..........................118 7.3 退火影響IMI薄膜結晶性..............................124 7.4 真空退火...........................................129 第八章 結論............................................132 未來值得研究方向.......................................135 參考文獻...............................................136 個人簡介及著作.........................................14551247906 bytesapplication/pdfen-US三明治透明導電薄膜銀鈦銀鈦銅耐候性IMIITO-Metal-ITO transparent conductive thin filmsandwich structureresistivitytransparencydurability銦錫氧化物-銀鈦(或銀鈦銅合金)-銦錫氧化物 三明治透明導電薄膜之開發研究A Development of The ITO-AgTi (or AgTiCu)-ITO Transparent Conductive Thin Filmsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55199/1/ntu-96-F90527045-1.pdf