駱尚廉臺灣大學:環境工程學研究所劉景文Liu, Ching-WenChing-WenLiu2007-11-292018-06-282007-11-292018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/62634鉻是一般工業上經常使用之原料,故在工業區附近之地下水中,鉻為最常見的污染物之ㄧ。零價鐵已廣泛的被應用於地下水整治復育工作上,近年來,利用零價鐵現地處理鉻污染的潛力也逐漸被重視。由於零價鐵之比表面積以及鈍化膜為影響其去除效率極為重要的因子,而奈米化後的鐵粉既具備較大的比表面積也具備較薄的鈍化膜,故在應用上遠比商用鐵粉更具效率,因此本研究主要在比較J.T.Baker牌商業鐵粉和自製奈米級鐵粉對於六價鉻之去除效果。 商業鐵粉系統中主要在探討共存陰離子(Cl-、 SO42-、 NO3-、 ClO4- 和 PO43-)、初始pH值和溫度對於六價鉻去除效率之影響 ,而在奈米鐵系統中則沒對溫度的影響進行討論。此外,本研究也有探討六價鉻去除反應之動力模式。 研究結果顯示當六價鉻中含有氯離子和硫酸根時能增加商業鐵粉對六價鉻的去除效果,而硝酸根、過氯酸根及磷酸根則會使商業鐵粉去除六價鉻的效果變差。然而在奈米鐵系統中,氯離子、硫酸根、硝酸根及過氯酸根對於六價鉻的去除效果影響較不明顯,但磷酸根卻會使六價鉻的去除效果明顯降低。 每單位重量零價鐵能去除六價鉻的量為奈米鐵大於商業鐵粉,會有這種結果是因為在商業鐵粉去除六價鉻的系統中,鈍化膜的破壞是主要的速率決定步驟,而在奈米鐵去除六價鉻的系統中則否。 六價鉻初始pH值越高時,商業鐵粉和奈米鐵去除六價鉻的能力均都下降。至於反應動力部分,商業鐵粉去除含氯離子之六價鉻溶液時為假一階反應,但奈米鐵去除六價鉻之反應卻為假二階反應。此外,反應系統的溫度提高時,則有利於商業鐵粉去除六價鉻的能力。 關鍵字:六價鉻、商業鐵粉、奈米鐵、pH、反應動力Chromium is a common pollutant in groundwater in industrial region because it is a raw material which is often used by many industries. Zero valent iron has been widely used in remediation of groundwater pollution. The potential for using zero valent iron to treat chromium pollution in situ has been concerned in recent years. The surface area and the passivity of the passive film on the iron surface are very important factors for chromium removal by zero valent iron. The surface area for nanolized iron is much larger and the passive film for nanolized iron is much thinner than that for commercial powder iron. Therefore, the chromium removal rate in nanolized iron system should be much higher than that in commercial powder iron system. The efficiencies of chromium removal in nanolized iron and commercial powder iron (J. T. Baker) systems were compared in this work. Three factors, co-existing anions (Cl-, SO42-, NO3-, ClO4- and PO43-), initial pH and temperature affected on chromium removal were investigated in commercial powder iron system. The same factors except the temperature were investigated in nanolized iron system. The kinetics of the chromium removal reaction was also examined in this study. The results show that the existence of chloride and sulfate ions can increase the rate of chromium removal by zero valent iron in commercial powder iron system. Otherwise existence of the phosphate, perchloride and nitrate ions can reduce the rate of chromium removal by zero valent iron in commercial powder iron system. However, in nanolized iron system, the influences of chloride, sulfate, nitrate and perchloride ions on chromium removal rate were very relatively insignificant. But the existence of phosphate ion can still decrease the chromium removal rate. The chromium removal per unit weight of iron in nonalized iron system was much larger than that in commercial powder iron system. This phenomenon indicates the destruction of passive film is the rate-determining step for chromium removal by zero valent iron in commercial powder iron system but is not in nonalized iron system. Both the removal rate of chromium decreased when the initial pH of chromium is higher. As chromium involves chloride, the kinetic of chromium removal by commercial powder iron follows pseudo-first-order reaction. But in the nanolized iron system, the kinetic follows pseudo-second-order. The chromium removal rate increased with the increase of temperature. Key words: chromium, commercial powder iron, nanolized iron, pH, kinetic目錄 頁次 第一章 緒論 1 1-1 研究緣起與動機 1-2 研究目的 1 1-3 研究架構 2 第二章 文獻回顧 5 2-1 鉻之簡介 5 2-1-1 鉻之特性 5 2-1-2 鉻之毒理性質 7 2-1-3 鉻之用途及其污染來源 8 2-1-4 鉻之去除方法 10 2-2 零價鐵去除鉻污染物技術之源起發展和研究現況 12 2-2-1 零價金屬處理技術之源起 12 2-2-2 零價鐵還原機制之探討 13 2-2-3 去除六價鉻之影響因子 14 2-2-4 六價鉻之還原反應動力 21 2-2-5 腐蝕理論 22 2-2-6 滲透性反應牆於地下水整治中之應用 28 2-3 奈米級零價鐵之製備技術 29 2-3-1 金屬奈米粒子之性質 30 2-3-2 奈米級零價鐵之製備方法 32 2-3-3 奈米級零價鐵用於地下水復育之現況 33 第三章 研究方法及進行步驟 35 3-1 整體研究架構 35 3-2 商業鐵粉部分實驗 37 3-3 奈米鐵部分實驗 42 3-4 重要儀器之配合使用情形 46 3-5 實驗設備及藥品 48 第四章 結果與討論 53 4-1 商業鐵粉之實驗結果 53 4-1-1 水中共存陰離子對六價鉻去除效果之影響 53 4-1-2 動力模式之探討 61 4-1-3 不同初始pH值對於六價鉻去除效果之影響 64 4-1-4 溫度對於反應之影響 65 4-1-5 腐蝕分析實驗 66 4-2 奈米鐵之實驗結果 71 4-2-1 水中共存陰離子對六價鉻去除效果之影響 71 4-2-2 動力模式之探討 77 4-2-3 不同初始pH值對於六價鉻去除效果之影響 80 4-3 商業鐵粉和奈米鐵實驗結果之比較 82 4-3-1 陰離子干擾實驗 82 4-3-2 動力實驗 87 4-3-3 不同初始pH值對於六價鉻去除效果之影響 90 第五章 結論與建議 91 5-1 結論 91 5-2 建議 93 參考文獻 95 圖目錄 頁次 圖1-1 研究架構圖 3 圖2-1 鉻之pH v.s Eh圖 6 圖2-2 典型的極化曲線示意圖 24 圖2-3 電極表面電路圖 26 圖2-4 鋅和白金偶合的極化曲線 27 圖2-5 透水性反應牆示意圖 29 圖3-1 整體研究架構圖 36 圖3-2 恆溫震盪器 50 圖3-3 高速離心機 50 圖3-4 冷凍乾燥機 51 圖3-5 原子吸收光譜儀 51 圖3-6 恆定電位/電流儀分析(Potentiostat/Galvanostat) 52 圖4-1 含硫酸根時Cr(VI)之去除效率圖 57 圖4-2 不含陰離子之XPS分析 60 圖4-3 含0.05M硫酸根之XPS分析 60 圖4-4 含0.05M氯離子之XPS分析 61 圖4-5 含0.5M氯離子時之反應動力圖 63 圖4-6 含0.1M氯離子時之反應動力圖 63 圖4-7 含0.01M氯離子時之反應動力圖 64 圖4-8 Cr(VI)於不同反應溫度時之去除效率圖 66 圖4-9 不含陰離子之系統極化曲線圖 68 圖4-10 含氯離子時之系統極化曲線圖 68 圖4-11 含硫酸根時之系統極化曲線圖 69 圖4-12 含過氯酸根時之系統極化曲線圖 69 圖4-13 含硝酸根時之系統極化曲線圖 70 圖4-14 含磷酸根時之系統極化曲線圖 70 圖4-15 反應前之奈米鐵 73 圖4-16 不含陰離子反應後之奈米鐵 74 圖4-17 經0.05M氯離子反應後之奈米鐵 74 圖4-18 經0.05M硫酸根反應後之奈米鐵 75 圖4-19 經0.05M硝酸根反應後之奈米鐵 75 圖4-20 經0.05M過氯酸根反應後之奈米鐵 76 圖4-21 經0.05M磷酸根反應後之奈米鐵 76 圖4-22 Cr(VI)在酸性和中性時濃度隨時間之變化圖 78 圖4-23 初始100mg/L之Cr(VI)以二階模擬之反應圖 79 圖4-24 初始80mg/L之Cr(VI)以二階模擬之反應圖 79 圖4-25 初始60mg/L之Cr(VI)以二階模擬之反應圖 80 圖4-26 Cr(VI)去除效率隨初始pH值之變化圖 81 圖4-27 奈米鐵表面EDX分析之結果圖 87 圖4-28 不同初始pH值對於Cr(VI)去除效率之影響圖 90 表目錄 頁次 表2-1 環保署對於鉻之管制標準 7 表2-2 二十四種六價鉻毒性化學物質之許可用途規定 9 表2-3 球形顆粒之比表面積與表面原子數隨顆粒直徑變化對照表 31 表 2-4 奈米級零價鐵之製備方法及其比表面積 34 表3-1 不同陰離子種類與濃度實驗系統表 38 表3-2 反應動力之採點時間間距 40 表3-3 溫度試驗之採點時間間距 41 表3-4 不同陰離子種類與濃度實驗系統表 43 表3-5 實驗藥品種類表 49 表4-1 含0.5 M 共存陰離子對於Cr(VI)去除效果之影響 55 表4-2 含0.05 M 共存陰離子對於Cr(VI)去除效果之影響 55 表4-3 BET比表面積分析 55 表4-4 反應完之鐵粉其表面元素定量分析 59 表4-5 Cr(VI)在不同初始pH值時之去除效率 65 表4-6 含0.01 M 陰離子對去除效果之影響 72 表4-7 含0.05 M 陰離子對去除效果之影響 73 表4-8 含0.5 M 陰離子對去除效果之影響 73 表4-9 BET比表面積分析 73 表4-10 Cr(VI)在不同初始pH值時之去除效率 81 表4-11 鐵粉在含陰離子時對六價鉻之去除效果(%) 85 表4-12 奈米鐵在含陰離子時對六價鉻之去除效果(%) 85 表4-13 含有共存陰離子時每單位重量零價鐵去除Cr(VI)量 86 表4-14 含有共存陰離子時每單位面積零價鐵去除Cr(VI)量 86 表4-15 商業鐵粉實驗之動力常數 89 表4-16 奈米鐵實驗之動力常數 89923036 bytesapplication/pdfen-US六價鉻商業鐵粉奈米鐵pH反應動力chromiumcommercial powder ironnanolized ironkinetic零價鐵去除水中六價鉻之研究Hexavalent Chromium Removal by Zerovalent Ironthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62634/1/ntu-94-R92541115-1.pdf