趙聖德臺灣大學:應用力學研究所張宏吉Chang, Hung-ChiHung-ChiChang2007-11-292018-06-292007-11-292018-06-292007http://ntur.lib.ntu.edu.tw//handle/246246/62455本論文首先對石英晶體微天平在氣相下的NaCl質量負載進行量測,將獲得的實驗值與Sauerbrey's Equation的值、使用有限元素分析軟體(Comsol Multiphysic)的模擬値互相比較,發現在200ng~ 2000ng時彼此間有相近的値。 接著在液相下,量測Human IgG1和Anti-Human IgG1的結合頻率變化,並算出它們之間的親和力。但因質量傳輸限制的影響,導致實驗値低估ka値、高估kd値,因此利用有限元素法做曲線耦合時,必須慢慢調高ka値,再調低kd値,並考慮Anti-Human IgG1在管路中前後端的濃度因為擴散而稀釋。所以當ka=3.48×104 M-1s-1、kd= 1.29×10-4 s-1和用時間控制濃度進行模擬時,獲得模擬曲 線與實驗曲線近似。 最後因為本實驗使用的石英晶體微天平受質量傳輸限制的影響,無法利用公式求出ka、kd與實際値相似的結果,因此提出改善的方法。首先將流道的尺寸大小縮為現有實驗儀器流道的千分之一(金電極反應面的直徑為3.4×10-4m、流速5.31×10-4 m/s、流道直徑7×10-4m、流道高0.6×10-4m、入口和出口直徑1×10-4m),接著將金電極的直徑變小為1.7×10-4m,最後再將流速調高為2.12×10-2m/s(流量10ul/min),則利用改善後的條件進行模擬,可求到與實際相似的ka値。This work starts with the experiment measuring the frequency shift of the lowest transwave shear mode by additional mass of NaCl on the electrode in the gas phase by QCM (Quartz Crystal Microbalance). In addition, the experimental data are compared to the preditions by Sauerbrey's equation and finite element simulation using Comsol Multiphysics. The comparisons are consistent for the adding mass of NaCl from 200ng to 2000ng. The Human IgG1 and Anti-Human IgG1 interactions are measured in liquid phase and their affinities (the association constant ka and dissociation constant kd) are calculated to give ka=1.212×104M-1s-1 and kd=3.501×10-3s-1 because of the effect of mass transport. It is readily known that the experimenta1 ka and kd is lower than real ka and kd. So, in order to obtain the consistent transient response with the experiments, bigger ka and kd must be used in the finite element simulations. It is found that ka=3.48×104M-1s-1 and kd=1.29×10-4s-1 are adequate such that the curves of simulation is close to the curves of experiment. Because of the effect of mass transport, real ka can't be obtained correctly from the experimental curves. Some improvements are made. We change channel volume, electrode diameter and fluid velocity respectively. Then we can learn that the new model scales are electrode diameter=1.7×10-4m, channel diameter=7×10-4m, channel highness=0.6×10-4m, inlet and outlet diameter=1×10-4m and fluid velocity= 2.12×10-2m/s respectively. As a result, new model is adopted and make the ka of simulation similar to real ka.誌謝 i 中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.2.1 生物感測器 2 1.2.2 聲學感測器 4 1.3 文獻回顧 5 1.4 論文架構 6 第二章 基本原理和介紹 7 2.1 石英晶體微天平 7 2.1.1 壓電效應 7 2.1.2 壓電統御方程式 8 2.1.3 石英晶體特性 10 2.1.4 石英晶體微天平感測原理 13 2.1.5 無負載時的石英晶片 14 2.1.6 理想質量負載於石英晶片表面 17 2.1.7 液體負載於石英晶片表面 19 2.1.8 理想質量和液體負載於石英晶片表面 26 2.1.9 解決液體狀態改變產生干擾的方法 26 2.2 石英晶片表面修飾 27 2.2.1 生物分子固定方式 27 2.2.2 自組裝單層薄膜 28 2.2.3 本實驗晶片表面修飾 29 2.3 免疫球蛋白 31 2.3.1 免疫球蛋白結構和作用力 31 2.3.2 免疫球蛋白G 33 2.4 流道分析 34 2.4.1 流場方程式 34 2.4.2 質量傳輸(Mass Transport)方程式 35 2.4.3 化學反應(Chemical Reaction)方程式 35 2.5 親和力分析 36 第三章 實驗方法與結果 39 3.1 儀器設備 39 3.2 預備實驗 40 3.2.1 系統穩定度 40 3.2.2 石英晶片表面之清洗 41 3.3 氣相質量負載對頻率的變化 42 3.4 人體免疫球蛋白抗體抗原結合頻率的變化 43 3.5 實驗結果 45 3.5.1系統穩定度 45 3.5.2 氣相質量負載對頻率的變化 46 3.5.3 人體免疫球蛋白抗體抗原結合頻率的變化 48 3.6 親和力計算 61 3.6.1 利用方程式2-59計算親和力 61 3.6.2 利用方程式2-60計算親和力 63 3.6.3 兩種方式比較 65 第四章 數值模擬及與實驗比較 67 4.1 氣相質量負載模擬與實驗比較 67 4.1.1 石英晶體(無金電極厚度)振盪頻率 67 4.1.2 石英晶體(有金電極厚度)振盪頻率 70 4.1.2 氣相質量負載振盪頻率變化與實驗比較 73 4.2 人類免疫球蛋白抗體抗原結合曲線模擬 76 4.2.1 模擬方法 76 4.2.2 基本參數設定 77 4.2.3 不同的Anti- Human IgG1濃度曲線模擬 80 4.3結合速率常數(ka)的探討 84 4.3.1 結合速率公式的曲線計算親和力 84 4.3.2 抗體抗原結合模擬曲線計算親和力 86 4.3.3 結合速率常數(ka)的結果比較 88 4.4 結合速率常數(ka)的最佳化 88 4.4.1 流道尺寸的設計 89 4.4.2 改變流速的大小 94 4.4.3 金電極反應面大小的設計 100 4.4.4 結合速率常數(ka)的最佳化後比較 105 第五章 結論與未來展望 106 5.1 結論 106 5.2 未來展望 107 參考文獻 1083188129 bytesapplication/pdfen-US石英晶體微天平親和力有限元素分析Human IgG1Anti-Human IgG1壓電Comsol MultiphysicsQCM (Quartz Crystal Microbalance)AffinityFEM (Finite Element Method)Piezoelectric石英晶體微天平的實驗和模擬應用於抗體與抗原結合之親和力分析Simulation and Experiment of Quartz Crystal Microbalance for Affinity Analysis of Antibody-Antigen Interactionsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62455/1/ntu-96-R94543040-1.pdf