吳先琪臺灣大學:環境工程學研究所蔡芙蓉Tsai, Fu-jungFu-jungTsai2007-11-292018-06-282007-11-292018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/62725含氯碳氫物(二氯乙烯、三氯乙烯、四氯乙烯、三氯乙烷等)是土壤及地下水污染場址中最常見的污染物,其具毒性之特性,對人體健康與環境危害甚鉅。欲正確評估整治復育方案之可行性,必須充分了解污染物在土壤的吸脫附行為。本研究採用薄膜-傅立葉轉換紅外線光譜儀法(Film-FTIR method),主要針對土壤無機固相的主要成份-黏土礦物進行吸脫附含氯碳氫物之動力實驗,並同時監測含氯有機物吸附於黏土礦物上是否有發生化學結構轉化反應。 由吸/脫附動力之實驗結果顯示,二氯乙烯、三氯乙烯(黃,2003)、四氯乙烯以及三氯乙烷於鈣飽和蒙特石上之吸/脫附行為沒有不可逆的現象發生。在高相對濕度(RH>95%)下,此五種含氯有機化合物於鈣飽和蒙特石上之吸/脫附速率,以1,2-順、反-二氯乙烯最快,三氯乙烷次之,三氯乙烯、四氯乙烯最慢。此外,不同相對濕度下,有機物的吸脫附行為有明顯差異,以雙吸附基模式來描述高/低相對濕度下之吸脫附行為,推估在高相對濕度下是由較快的黏土礦物表面之水膜吸/脫附作用,和較慢的有機物分子溶入水膜進而吸附於黏土礦物表面所組成;在低相對濕度下是由快的表面吸/脫附和較慢的微孔脫附所組成。由三氯乙烯在不同相對濕度之等溫吸附曲線,亦可發現在低相對溼度(RH<1%)時,吸附曲線呈現BET型式,而在高相對溼度(RH>95%)時,其吸附量下降且吸附曲線成線性。 藉由紅外線光譜,發現三氯乙烷在高/低相對濕度下於鈣飽和蒙特石上可能發生化學結構轉化反應。利用IC分析三氯乙烯於鈣飽和蒙特石(4個月)之脫氯程度,結果顯示三氯乙烯有脫氯反應,可視為三氯乙烯於鈣飽和蒙特石已發生化學結構轉化之證據。Chlorinated hydrocarbons, such as dichloroethylene, trichloroethylene, tetrachloroethylene, and trichloroethane, are common contaminants found in soil and groundwater. Due to the characteristics of their toxicity, they are extremely harmful to human health and the environment. In order to correctly evaluate the feasibility of remediation programs, it is necessary to fully understand the adsorption/desorption behaviors of these compounds in soil. In present study, we use Film-FTIR method to analyze the adsorption/desorption kinetics of the chlorinated hydrocarbons in clay, the major inorganic soil component. In addition, this technique also allows possible transformations (degradation) of the adsorbed chlorinated organic compounds to be detected. The results of the adsorption/desorption kinetics show that the adsorption/desorption behaviors of dichloroethylene, thrichloroethylene (Huang,2003), tetrachloroethylene ,and 1,1,1-thrichloroethane on Ca- montmorillonite are not irreversible. Under high relative humidity (RH > 95%), the adsorption/desorption rates of these five chlorinated organic compounds on Ca-montmorillonite decrease in the following order: cis or trans 1,2-dichloroethylene > 1,1,1-trichloroethane > trichloroethylene and tetrachloroethylene. Moreover, the adsorption/desorption behavior is obviously different under different relative humidity. A two-site model can be used to describe the adsorption/desorption behavior under different relative humidity. At high relative humidity, the adsorption of the organic molecules onto water film surface is faster, while the transferring of the organic molecules through the water layer onto the surface of clay minerals is slower. In contrast, the adsorption/desorption mechanism consists of fast surface adsorption/desorption and slower porous adsorption/desorption steps under low relative humidity. The adsorption isotherm is BET type at low relative humidity (RH<1%), while a lower adsorption capacity and a linear adsorption isotherm was observed at higher relative humidity (RH>95%). Furthermore, we analyzed FTIR spectra and found that trichloroethane undergoes chemical transformations on Ca-montmorillonite at either low or high relative humidity. The IC analysis of trichloroethylene on Ca- montmorillonite (4 months) further indicates that trichloroethylene was dechlorinated. Therefore, this provides another evidence of the chemical transformation of trichloroethylene on Ca-montmorillonite.第一章 緒論………………………………………………..….1-1 1.1 研究緣起……………………………………………….1-1 1.2 研究動機與目的……………………………..…………1-4 第二章 研究之背景與原理………………………………..….2-1 2.1 揮發性有機物於土壤中之傳輸途徑與反應……………...2-1 2.2 揮發性有機物於土壤中之型態…………………………2-2 2.3 影響土壤中吸/脫附揮發性有機物的因子………..….…...2-5 2.3.1 不同黏土礦物的影響……………..….…………...2-8 2.3.2 不同有機物的影響….…………………………....2-10 2.3.3 水份的影響……...…………………………….…2-12 2.3.4 不同時間尺度的影響……………………………..2-13 2.4 含氯碳氫物於黏土礦物中的轉化反應……….…………..2-14 第三章 研究方法………………………….……...……..……3-1 3.1 研究內容……………………………………………...3-1 3.2 吸附質……………………………………..…….……3-3 3.3 黏土礦物的製備…………………………….…….…..….3-4 3.4 紅外線光譜定性與定量的方法……..……………..….....3-6 3.4.1 定性方法……….……………………..………...…3-6 3.4.2 定量方法……………………………………………..…3-6 3.5 以傅立葉紅外線光譜儀(FTIR)進行吸脫附動力實驗.…....3-7 3.5.1 樣品薄膜的製備……………………..………...…3-7 3.5.2 傅立葉紅外線光譜儀(FTIR)之實驗操作條件.…..….3-7 3.5.3 吸脫附動力實驗流程…………………………..…..….3-8 3.6 有機物濃度分析-氣相色層分析……..…………………3-14 3.7 三氯乙烯等溫吸附平衡實驗….……..…………………3-14 3.7.1 乾狀況(RH<1%)下之等溫吸附曲線…..………...…3-14 3.5.2 濕狀況(RH>95%)下之等溫吸附曲線…..……….…3-15 3.8 以離子層析儀(IC)測定三氯乙烯於黏土礦物上之脫氯反應………………………………………………………………..…3-15 3.8.1 離子層析儀(IC)之原理…………….…..………...…3-15 3.8.2 實驗流程……………………………..…..……….…3-16 3.9 鈣飽和蒙特石於高相對濕度(RH>95%)下之水覆蓋量.…3-16 第四章、結果與討論…………………………….….……....4-1 4.1 鈣飽和蒙特石之基本性質………………...………….4-1 4.1.1 鈣飽和蒙特石紅外線吸收光譜圖分析…………..,.4-1 4.1.2 孔隙比表面積及孔隙體積分佈……………….….4-3 4.2 1,1,1-三氯乙烷、1,2-順、反-二氯乙烯、四氯乙烯於不 同狀況下之光譜變化……………………………....…4-4 4.3 FTIR系統的穩定度與偵測極限.………………….………4-11 4.3.1 儀器的穩定度與偵測極限…..………………….…4-11 4.3.2 氣體進入反應室之時間……………………..……4-11 4.4 1,1,1-三氯乙烷、1,2-順、反-二氯乙烯、四氯乙烯於鈣 飽和蒙特石之光譜變化………………………………4-13 4.4.1 1,1,1-三氯乙烷之吸脫附光譜變化………….……..4-13 4.4.2 1,2-順、反-二氯乙烯之吸脫附光譜變化………….4-26 4.4.3 四氯乙烯之吸脫附光譜變化………..………………4-29 4.5 不同含氯有機化合物於鈣飽和蒙特石上之吸/脫附動力...4-31 4.5.1 數據處理與反應動力模式之假設…………………4-31 4.5.2 三氯乙烷於不同水分境況之吸脫附動力…..………4-32 4.5.3 不同含氯有機化合物在高相對濕度(RH>95%)狀況下吸脫附動力之比較…………………………………………...4-37 4.6 三氯乙烯於鈣飽和蒙特石之等溫吸附曲線……...……....4-43 4.7 三氯乙烯於鈣飽和蒙特石之脫氯程度分析……...……....4-46 第五章 結論與建議……………………………………….…..5-1 5.1 結論…………….…………………………….….……5-1 5.2 建議………………………….………………..………5-3 第六章 參考文獻………………………………………….…..6-1 附錄一、吸附動力實驗數據 附錄二、脫附動力實驗數據 附錄三、三氯乙烯於鈣飽和蒙特石之等溫吸附曲線 表目錄 表1.1 台灣地區土壤及地下水受有機物污染案例…...………...1-2 表1.2 美國超級基金(superfund)所列管的場址中最常見的20種地 下水污染物………………………………………………..1-3 表2.1 土壤中五種成分對非極性有機化合物之吸/脫附動力與機制 的定性比較………………………………………………..2-4 表2.2 代表性黏土礦物之基本性質比較………………………..2-6 表2.3 含氯烯類化合物與不同陽離子飽和膨潤石作用的顏色變化及產物的物理性質……………………………………….2-17 表3.1 含氯有機溶劑之物化性質…………………………….….3-3 表3.2 蒙特石之基本性質……………………………..………3-4 表4.1 鈣飽和蒙特石之紅外線光譜吸收峰意義說明……..……4-3 表4.2 鈣飽和蒙特石之孔隙比表面積及體積分佈………….….4-5 表4.3 1,1,1-三氯乙烷之紅外線光譜特徵吸收峰意義說明……4-5 表4.4 1,2-反-二氯乙烯之紅外線光譜特徵吸收峰意義說明….4-5 表4.5 1,2-順-二氯乙烯之紅外線光譜特徵吸收峰意義說明….4-6 表4.6 四氯乙烯之紅外線光譜特徵吸收峰意義說明………….4-6 表4.7 聚苯乙烯(polystyrene)於各波長範圍之偵測極限……..4-11 表4.8 1,1,1-三氯乙烷、1,2-順、反-二氯乙烯、四氯乙烯於各波長範圍之偵測極限..……………………………...………..4-12 表4.9 三氯乙烷於不同相對濕度發生化學轉化之紅外線吸收峰位置..……………………………………………...………..4-24 表4.10 三氯乙烷於鈣飽和蒙特石上之吸/脫附速率常數……4-43 表4.11 不同含氯有機化合物於高相對濕度(RH>95%)狀況之吸脫附速率常數………………………………..………..4-42 表4.12 鈣飽和蒙特石吸附三氯乙烯之BET吸附參數……...4-44 表4.13 三氯乙烯吸附於飽和蒙特石上之莫耳吸光係數.…….4-45 表4.14 三氯乙烯於飽和蒙特石上之脫氯程度………….…...4-46 圖目錄 圖2.1 土壤中五種成分對非極性有機化合物之吸附示意圖..…2-3 圖2.2 代表性黏土礦物之基本構造示意圖.……………….……2-6 圖2.3 CCl4在HS- 水溶液系統中可能的電子轉移和脫氯反應過程…………………………….………….……….…….…2-15 圖2.4 五氯乙烷在smectite表面的反應機制…...………..…...2-16 圖2.5 含氯烯類化合物在Cu2+飽和膨潤石上的反應機制..….2-18 圖2.6 三氯乙烯在Cu2+飽和膨潤石上經電子轉移以及脫氯生成 乙醛酸的反應過程.……………………...……….……...2-18 圖3.1 研究架構流程圖………………………….………………3-2 圖3.2 低相對濕度狀況(RH<1%)下之吸/脫附實驗裝置….3-11 圖3.3 高相對濕度狀況(RH>95%)下之吸/脫附實驗裝置…3-12 圖3.4 使用集氣袋之吸/脫附實驗裝置…………………...….…3-13 圖4.1 鈣飽和蒙特石之紅外線吸收光譜圖………………….…4-2 圖4.2 三氯乙烷之紅外線吸收光譜圖……………………….…4-7 圖4.3 1,2-反-二氯乙烯之紅外線吸收光譜圖……………….…4-8 圖4.4 1,2-順-二氯乙烯之紅外線吸收光譜圖………………….4-9 圖4.5 四氯乙烯之紅外線光譜吸收光譜圖………….……….4-10 圖4.6 反應室通入氣體之濃度變化與時間關係圖…….……...4-12 圖4.7 鈣飽和蒙特石於低相對濕度(RH<1%)狀況下短時間吸 脫附1,1,1-三氯乙烷之紅外線光譜圖…………..……...4-15 圖4.8 鈣飽和蒙特石於於高相對濕度(RH>95%)狀況下短時間吸脫附1,1,1-三氯乙烷之紅外線光譜圖……………....4-16 圖4.9 鈣飽和蒙特石於低相對濕度(RH<1%)狀況下長時間吸 脫附三氯乙烯的紅外線光譜圖(P/P0:0.06~0.07)…….....4-19圖4.10 鈣飽和蒙特石於低相對濕度(RH<1%)狀況下長時間吸 脫附三氯乙烯的紅外線光譜圖(P/P0:0.4~0.5)…….…...4-20 圖4.11 鈣飽和蒙特石於低相對濕度(RH<1%)狀況下長時間通入氮氣的紅外線光譜圖……………………….………...4-21 圖4.12 鈣飽和蒙特石於高相對濕度(RH>95%)狀況下長時間吸脫附1,1,1-三氯乙烷的紅外線光譜圖…………...……...4-22 圖4.13 1,1,1-三氯乙烷的水解反應途徑………….….....……...4-25 圖4.14 carboxylate species 以雙牙基方式鍵結於氧化鋁表面之示意圖…………………………………….…..……..……...4-25 圖4.15 鈣飽和蒙特石於高相對濕度(RH>95%)狀況下長時間吸脫附1,2-反-二氯乙烯的紅外線光譜圖…………...…...4-27 圖4.16 鈣飽和蒙特石於高相對濕度(RH>95%)狀況下長時間吸脫附1,2-順-二氯乙烯的紅外線光譜圖…………...…...4-28 圖4.17 鈣飽和蒙特石於高相對濕度(RH>95%)狀況下長時間吸脫附四氯乙烯的紅外線光譜圖…………………....…...4-30 圖4.18 低相對濕度(RH<1%)下之鈣飽和蒙特石吸附三氯乙烷 之動力曲線和雙吸附基模擬曲線…..……..…..……...4-33 圖4.19低相對濕度(RH<1%)下之鈣飽和蒙特石脫附三氯乙烷 之動力曲線和雙吸附基模擬曲線…..……..…..……...4-33 圖4.20高相對濕度(RH>95%)下鈣飽和蒙特石吸附三氯乙烷之動力曲線和雙吸附基模擬曲線……..…....….....……...4-34 圖4.21高相對濕度(RH>95%)下鈣飽和蒙特石脫附三氯乙烷之動力曲線和雙吸附基模擬曲線……..…..…….....……...4-34 圖4.22高相對濕度(RH>95%)下鈣飽和蒙特石吸脫附1,2-順-二氯乙烯之動力曲線和單吸附基模擬曲線….....……...4-38 圖4.23高相對濕度(RH>95%)下鈣飽和蒙特石吸脫附1,2-反-二氯乙烯之動力曲線和單吸附基模擬曲線….....……...4-39 圖4.24高相對濕度(RH>95%)下長時間鈣飽和蒙特石吸附1,2-順、反-二氯乙烯之動力曲線……………..….....……...4-40 圖4.25高相對濕度(RH>95%)下鈣飽和蒙特石吸脫附四氯乙烯之動力曲線和雙吸附基模擬曲線..………..….....……...4-41 圖4.26 三氯乙烯於不同水份境況下之等溫吸附曲線與BET之模擬曲線..………..…................................................……...4-432930042 bytesapplication/pdfen-US含氯有機物薄膜-傅立葉轉換紅外線光譜儀法蒙特石吸/脫附動力脫氯chlorinated hydrocarbonsFilm-FTIRmontmorilloniteadsorption/desorption kineticsdechlorination[SDGs]SDG3含氯揮發性有機物氣體於黏土礦物上之吸/脫附動力Sorption and Desorption Kinetics of Chlorinated Volatile Organic Vapors on Clay Mineralsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62725/1/ntu-94-R92541133-1.pdf