Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Applying machine learning to construct an association model for lung cancer and environmental hormone high-risk factors and nursing assessment reconstruction.
 
  • Details

Applying machine learning to construct an association model for lung cancer and environmental hormone high-risk factors and nursing assessment reconstruction.

Journal
Journal of nursing scholarship : an official publication of Sigma Theta Tau International Honor Society of Nursing
ISSN
1547-5069
Date Issued
2024-06-04
Author(s)
Lee, Pin-Chieh
MONG-WEI LIN  
HSIEN-CHI LIAO  
Lin, Chan-Yi
Liao, Pei-Hung
DOI
10.1111/jnu.12997
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/720769
Abstract
To utilize machine learning techniques to develop an association model linking lung cancer and environmental hormones to enhance the understanding of potential lung cancer risk factors and refine current nursing assessments for lung cancer. This study is exploratory in nature. In Stage 1, data were sourced from a biological database, and machine learning methods, including logistic regression and neural-like networks, were employed to construct an association model. Results indicate significant associations between lung cancer and blood cadmium, urine cadmium, urine cadmium/creatinine, and di(2-ethylhexyl) phthalate. In Stage 2, 128 lung adenocarcinoma patients were recruited through convenience sampling, and the model was validated using a questionnaire assessing daily living habits and exposure to environmental hormones. Analysis reveals correlations between the living habits of patients with lung adenocarcinoma and exposure to blood cadmium, urine cadmium, urine cadmium/creatinine, polyaromatic hydrocarbons, diethyl phthalate, and di(2-ethylhexyl) phthalate. According to the World Health Organization's global statistics, lung cancer claims approximately 1.8 million lives annually, with more than 50% of patients having no history of smoking or non-traditional risk factors. Environmental hormones have garnered significant attention in recent years in pathogen exploration. However, current nursing assessments for lung cancer risk have not incorporated environmental hormone-related factors. This study proposes reconstructing existing lung cancer nursing assessments with a comprehensive evaluation of lung cancer risks. The findings underscore the importance of future studies advocating for public screening of environmental hormone toxins to increase the sample size and validate the model externally. The developed association model lays the groundwork for advancing cancer risk nursing assessments.
Subjects
association model
environmental hormones
lung cancer
machine learning
nursing assessment reconstruction
Publisher
John Wiley and Sons Inc
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science