Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Learning to recognize transient sound events using attentional supervision
 
  • Details

Learning to recognize transient sound events using attentional supervision

Journal
IJCAI International Joint Conference on Artificial Intelligence
Journal Volume
2018-July
Pages
3336 - 3342
Date Issued
2018
Author(s)
SHAN-YU CHOU  
JYH-SHING JANG  
YI-HSUAN YANG  
DOI
10.24963/ijcai.2018/463
URI
https://doi.org/10.24963/ijcai.2018/463
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055700674&doi=10.24963%2fijcai.2018%2f463&partnerID=40&md5=9fde5bff469c847a3e5a51e52fac564b
Abstract
Making sense of the surrounding context and ongoing events through not only the visual inputs but also acoustic cues is critical for various AI applications. This paper presents an attempt to learn a neural network model that recognizes more than 500 different sound events from the audio part of user generated videos (UGV). Aside from the large number of categories and the diverse recording conditions found in UGV, the task is challenging because a sound event may occur only for a short period of time in a video clip. Our model specifically tackles this issue by combining a main subnet that aggregates information from the entire clip to make clip-level predictions, and a supplementary subnet that examines each short segment of the clip for segment-level predictions. As the labeled data available for model training are typically on the clip level, the latter subnet learns to pay attention to segments selectively to facilitate attentional segment-level supervision. We call our model the M&mnet, for it leverages both “M”acro (clip-level) supervision and “m”icro (segment-level) supervision derived from the macro one. Our experiments show that M&mnet works remarkably well for recognizing sound events, establishing a new state-of-the-art for DCASE17 and AudioSet data sets. Qualitative analysis suggests that our model exhibits strong gains for short events. In addition, we show that the micro subnet is computationally light and we can use multiple micro subnets to better exploit information in different temporal scales. © 2018 International Joint Conferences on Artificial Intelligence. All right reserved.
Event(s)
27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Other Subjects
Audio acoustics; AI applications; Model training; Neural network model; Qualitative analysis; Short segments; State of the art; Temporal scale; User-generated video; Artificial intelligence
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science