Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Stabilizing the electrodeposit-electrolyte interphase in soluble lead flow batteries with ethanoate additive
 
  • Details

Stabilizing the electrodeposit-electrolyte interphase in soluble lead flow batteries with ethanoate additive

Journal
Electrochimica Acta
Journal Volume
263
Pages
60-67
Date Issued
2018
Author(s)
Lin Y.-T.
Tan H.-L.
Lee C.-Y.
HSUN-YI CHEN  
DOI
10.1016/j.electacta.2018.01.013
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/438528
URL
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85040308388&doi=10.1016%2fj.electacta.2018.01.013&partnerID=40&md5=c0c38b4d9808376c3138a78f109cfbdd
Abstract
The soluble lead flow battery (SLFB) is a promising energy storage system. In comparison to conventional flow batteries, the membrane-less and single-flow design of SLFBs is potentially much more economical to scale up for utility-scale applications. However, SLFB lifespan reported so far is less than 200 cycles under normal flow conditions. This study reports a method for significantly extending the cycle life and expanding capacity of SLFBs. By adding an adequate amount of sodium ethanoate to the electrolyte, lead dioxide (PbO2) deposition stability is materially improved and shed PbO2 particles are substantially reduced. Lifespan of ethanoate-added SLFBs is shown to extend by over 50%, and under optimal condition exceeds 500 cycles at over 65% energy efficiency. This improvement in SLFB performance is primarily attributed to the stabilization of both the electroplated PbO2 layers and proton activity at the electrodeposit-electrolyte interphase. We demonstrate a novel and economical approach for advancing performance of membrane-less flow batteries that involve redox reactions associated with acidity variation and operate through electrodeposition. © 2018 Elsevier Ltd
Subjects
Adsorption; Electroplating; Ethanoate; Residual stress; Soluble lead flow batteries
SDGs

[SDGs]SDG7

Other Subjects
Adsorption; Electric batteries; Electrodes; Electrolytes; Electroplating; Energy efficiency; Lead compounds; Redox reactions; Residual stresses; Secondary batteries; Cycle lives; Deposition stabilities; Energy storage systems; Ethanoate; Lead dioxide; Normal flow; Optimal conditions; Proton activity; Flow batteries
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science