The Phosphorylation State of GSK3β Serine 9 Correlated to the Development of Valproic Acid-Associated Fetal Cardiac Teratogenicity, Fetal VPA Syndrome, Rescued by Folic Acid Administration
Journal
Cardiovascular Toxicology
Journal Volume
16
Journal Issue
1
Pages
34-45
Date Issued
2016
Author(s)
Abstract
The effects of the phosphorylation state of the glycogen synthase kinase 3β involved in the cardiac myocytes (jelly-like cells) epithelial-mesenchymal transition-associated migration during heart-valve formation were examined through the valproic acid-induced cardiac teratogenicity of transgenic line A34 of Tg in a the Brachydanio rerio embryo model. Valproic acid is an effective anti-epileptic drug; however, when taken by pregnant women to treat epilepsy, it can produce cardiac developmental defects in fetuses. In this study, the role of glycogen synthase kinase 3β in valproic acid-induced cardiac teratogenicity was investigated. Transgenic line A34 of zebrafish embryos was used at 3 days postfertilization. The results show that 78% (18/23) of the embryos treated with 0.10 mM valproic acid (group A) had incomplete chamber formation with normal looping and 22 % (5/23) had abnormal looping. Bradycardia was also found in comparison with control embryos (P < 0.001). For the embryos treated with 0.25 mM valproic acid (group B), 92% (22/24) demonstrated chamber formation failure and looping abnormality. Pericardial effusion, noncontracting ventricles, and enlarged, slowly beating atriums were observed at 6 days postfertilization. Valproic acid inhibited phosphorylation of serine 9 in glycogen synthase kinase 3β in a dose-dependent manner. According to immunochemical staining results, valproic acid was shown to inhibit the mass migration and proliferation of cardiomyocytes in the development of the heart-valve region through inhibition of the GSK3β Ser 9 phosphorylation. Folic acid rescued the GSK3β Ser 9 phosphorylation and reversed the valproic acid-induced cardiac morphological, functional, and biochemical defects.
Publisher
Humana Press Inc.
Type
journal article