Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. AirCharge: Amplifying Ungrounded Impact Force by Accumulating Air Propulsion Momentum
 
  • Details

AirCharge: Amplifying Ungrounded Impact Force by Accumulating Air Propulsion Momentum

Journal
UIST 2023 - Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology
ISBN
9798400701320
Date Issued
2023-10-29
Author(s)
Chen, Po Yu
Tsai, Ching Yi
Wang, Wei Hsin
Lai, Chao Jung
Fan, Chia An
Lin, Shih Chin
Chi, Chia Chen
MIKE YEN-YANG CHEN  
DOI
10.1145/3586183.3606768
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/638125
URL
https://api.elsevier.com/content/abstract/scopus_id/85178515765
Abstract
Impact events, which generate directional forces with extremely short impulse durations and large force magnitudes, are prevalent in both virtual reality (VR) games and real-world experiences. However, despite recent advancement in ungrounded force feedback technologies, such as air jet propulsion and propellers, these technologies remain 5-100x weaker and 10-500x slower compared to real-world impact events. For instance, they can only achieve 4N with a minimal duration of 50-500ms compared to the 20-400N forces generated within 1-5ms for baseball, ping-pong, drumming, and tennis. To overcome these limitations, we present AirCharge, a novel haptic device that accumulates air propulsion momentum to generate instantaneous, directional impact forces. By mounting compressed air jets on rotating swingarms, AirCharge can amplify impact force magnitude by more than 10x while matching real-world impulse duration of 3ms. To support high-frequency impacts, we explored and evaluated a series of device designs, culminating in a novel reciprocating dual-swingarm design that leverages a reversing bevel gearbox to eliminate gyro effects and to achieve impact feedback of up to 10Hz. User experience evaluation (n = 16) showed that AirCharge significantly enhanced realism and is preferred by participants compared to air jets without the charging mechanism.
Subjects
air propulsion | Haptics | impact forces | ungrounded force feedback | virtual reality
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science