Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Physics / 物理學系
  4. Linking the Singularities of Cosmological Correlators
 
  • Details

Linking the Singularities of Cosmological Correlators

Journal
Journal of High Energy Physics
Journal Volume
2022
Journal Issue
9
Date Issued
2021-06-10
Author(s)
Daniel Baumann  
Wei-Ming Chen
Carlos Duaso Pueyo
Austin Joyce
Hayden Lee
Guilherme L. Pimentel
DOI
10.1007/JHEP09(2022)010
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/639446
URL
http://arxiv.org/abs/2106.05294v2
Abstract
Much of the structure of cosmological correlators is controlled by their
singularities, which in turn are fixed in terms of flat-space scattering
amplitudes. An important challenge is to interpolate between the singular
limits to determine the full correlators at arbitrary kinematics. This is
particularly relevant because the singularities of correlators are not directly
observable, but can only be accessed by analytic continuation. In this paper,
we study rational correlators, including those of gauge fields, gravitons, and
the inflaton, whose only singularities at tree level are poles and whose
behavior away from these poles is strongly constrained by unitarity and
locality. We describe how unitarity translates into a set of cutting rules that
consistent correlators must satisfy, and explain how this can be used to
bootstrap correlators given information about their singularities. We also
derive recursion relations that allow the iterative construction of more
complicated correlators from simpler building blocks. In flat space, all energy
singularities are simple poles, so that the combination of unitarity
constraints and recursion relations provides an efficient way to bootstrap the
full correlators. In many cases, these flat-space correlators can then be
transformed into their more complex de Sitter counterparts. As an example of
this procedure, we derive the correlator associated to graviton Compton
scattering in de Sitter space, though the methods are much more widely
applicable.
Subjects
Cosmology of Theories BSM | Scale and Conformal Symmetries | Scattering Amplitudes; High Energy Physics - Theory; High Energy Physics - Theory; astro-ph.CO; General Relativity and Quantum Cosmology; High Energy Physics - Phenomenology
Description
69+29 pages, 6 figures; v2: final version for submission, graviton
Compton correlator is now fully derived
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science