Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes
 
  • Details

Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes

Journal
ACS Nano
Journal Volume
13
Journal Issue
7
Start Page
8292
End Page
8302
ISSN
19360851
Date Issued
2019
Author(s)
Lang, Chao
Ye, Dan
Song, Woochul
Yao, Chenhao
YU-MING TU  
Capparelli, Clara
Lanasa, Jacob A.
Hickner, Michael A.
Gomez, Esther W.
Gomez, Enrique D.
Hickey, Robert J.
Kumar, Manish
DOI
10.1021/acsnano.9b03659
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85098674905&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/721223
Abstract
Cell membranes control mass, energy, and information flow to and from the cell. In the cell membrane a lipid bilayer serves as the barrier layer, with highly efficient molecular machines, membrane proteins, serving as the transport elements. In this way, highly specialized transport properties are achieved by these composite materials by segregating the matrix function from the transport function using different components. For example, cell membranes containing aquaporin proteins can transport -4 billion water molecules per second per aquaporin while rejecting all other molecules including salts, a feat unmatched by any synthetic system, while the impermeable lipid bilayer provides the barrier and matrix properties. True separation of functions between the matrix and the transport elements has been difficult to achieve in conventional solute separation synthetic membranes. In this study, we created membranes with distinct matrix and transport elements through designed coassembly of solvent-stable artificial (peptide-appended pillar[5]arene, PAP5) or natural (gramicidin A) model channels with block copolymers into lamellar multilayered membranes. Self-assembly of a lamellar structure from cross-linkable triblock copolymers was used as a scalable replacement for lipid bilayers, offering better stability and mechanical properties. By coassembly of channel molecules with block copolymers, we were able to synthesize nanofiltration membranes with sharp selectivity profiles as well as uncharged ion exchange membranes exhibiting ion selectivity. The developed method can be used for incorporation of different artificial and biological ion and water channels into synthetic polymer membranes. The strategy reported here could promote the construction of a range of channel-based membranes and sensors with desired properties, such as ion separations, stimuli responsiveness, and high sensitivity. © 2019 American Chemical Society.
Subjects
artificial channel
block copolymer
lamellae
membrane
pillar[5]arene
self-assembly
Publisher
American Chemical Society
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science