Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Neural network-based equalizer by utilizing coding gain in advance
 
  • Details

Neural network-based equalizer by utilizing coding gain in advance

Journal
GlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Proceedings
ISBN
9.78173E+12
Date Issued
2019
Author(s)
AN-YEU(ANDY) WU  
DOI
10.1109/GlobalSIP45357.2019.8969437
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079275128&doi=10.1109%2fGlobalSIP45357.2019.8969437&partnerID=40&md5=a6bb6db7897a3cf52ac56ca1c363a0e0
https://scholars.lib.ntu.edu.tw/handle/123456789/611220
Abstract
Recently, deep learning has been exploited in many fields with revolutionary breakthroughs. In the light of this, deep learning-assisted communication systems have also attracted much attention in recent years and have potential to break down the conventional design rule for communication systems. In this work, we propose two kinds of neural network-based equalizers to exploit different characteristics between convolutional neural networks and recurrent neural networks. The equalizer in conventional block-based design may destroy the code structure and degrade the capacity of coding gain for decoder. On the contrary, our proposed approach not only eliminates channel fading, but also exploits the code structure with utilization of coding gain in advance, which can effectively increase the overall utilization of coding gain with more than 1.5 dB gain. © 2019 IEEE.
Subjects
Channel coding; Channel fading; Convolutional neural network; Equalizer; Recurrent neural network
Other Subjects
Channel coding; Codes (symbols); Convolution; Convolutional neural networks; Fading channels; Network coding; Recurrent neural networks; Block based design; Break down; Code structure; Coding gains; Conventional design; Equalizers
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science