Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Discovering the city by mining diverse and multimodal data streams
 
  • Details

Discovering the city by mining diverse and multimodal data streams

Journal
2014 ACM Multimedia Conference
Pages
201-204
ISBN
9781450330633
Date Issued
2014
Author(s)
Kuo Y.-H.
Chen Y.-Y.
Chen B.-C.
Lee W.-Y.
Wu C.-C.
Lin C.-H.
Hou Y.-L.
Cheng W.-F.
Tsai Y.-C.
Hung C.-Y.
Hsieh L.-C.
WINSTON HSU  
DOI
10.1145/2647868.2656406
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/413005
Abstract
This work attempts to tackle the IBM grand challenge - seeing the daily life of New York City (NYC) in various perspectives by exploring rich and diverse social media content. Most existing works address this problem relying on single media source and covering limited life aspects. Because different social media are usually chosen for specific purposes, multiple social media mining and integration are essential to understand a city comprehensively. In this work, we first discover the similar and unique natures (e.g., attractions, topics) across social media in terms of visual and semantic perceptions. For example, Instagram users share more food and travel photos while Twitter users discuss more about sports and news. Based on these characteristics, we analyze a broad spectrum of life aspects - trends, events, food, wearing and transportation in NYC by mining a huge amount of diverse and freely available media (e.g., 1.6M Instagram photos, 5.3M Twitter posts). Because transportation logs are hardly available in social media, the NYC Open Data (e.g., 6.5B subway station transactions) is leveraged to visualize temporal traffic patterns. Furthermore, the experiments demonstrate that our approaches can effectively overview urban life with considerable technical improvement, e.g., having 16% relative gains in food recognition accuracy by a hierarchy crossmedia learning strategy, reducing the feature dimensions of sentiment analysis by 10 times without sacrificing precision.
Subjects
Cross-media mining; Multiple media sources; Visualization
SDGs

[SDGs]SDG11

Other Subjects
Data streams; Flow visualization; Open Data; Semantics; Sentiment analysis; Subway stations; Cross-media; Feature dimensions; Learning strategy; Multimodal data streams; Recognition accuracy; Social media minings; Technical improvement; Traffic pattern; Social networking (online)
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science