Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. NONDESTRUCTIVE QUANTITATIVE ANALYSIS OF WATER POTENTIAL OF TOMATO LEAVES USING ONLINE HYPERSPECTRAL IMAGING SYSTEM
 
  • Details

NONDESTRUCTIVE QUANTITATIVE ANALYSIS OF WATER POTENTIAL OF TOMATO LEAVES USING ONLINE HYPERSPECTRAL IMAGING SYSTEM

Journal
Applied Engineering in Agriculture
Journal Volume
38
Journal Issue
2
Date Issued
2022-01-01
Author(s)
Tung, Kuo Chih
PING-LANG YEN  
Tsai, Chao Yin
Ong, Pauline
Lin, Jer Wei
Chang, Yung Huei
SUMING CHEN  
DOI
10.13031/aea.14800
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/638561
https://www.scopus.com/record/display.uri?eid=2-s2.0-85130802120&origin=resultslist
URL
https://api.elsevier.com/content/abstract/scopus_id/85130802120
Abstract
Tomatoes have different water requirements in each growing period. Excessive water use or insufficient water supply will affect the growth and yield of tomato plants. Therefore, precise irrigation control is necessary during cultivation to increase crop productivity. Traditionally, the soil moisture content or leaf water potential has been used as an indicator of plant water status. These methods, however, have limited accuracy and are time-consuming, making it difficult to be put into practice in tomato production. This study developed an online hyperspectral imaging system to measure the leaf water potential of tomato nondestructively. Linear Discriminant Analysis was utilized to automatically and quickly extract the leaf images, with the recognition accuracy of 94.68% was achieved. The mathematical processing of Standard Normal Variate scattering correction was used to remove the spectral variations caused by the defocused leave images. The developed leaf water potential prediction model based on the spectral image information attained using the developed system achieved the standard error of calibration of 0.201, coefficient of determination in calibration set of 0.814 and standard error of crossvalidation of 0.230, and one minus the variance ratio of 0.755. The obtained performance indicated the feasibility of applying the developed online hyperspectral imaging system as a real-time non-destructive measurement technique for the leaf water potential of tomato plants.
Subjects
Hyperspectral imaging system | Machine learning | Tomato | Water potential
SDGs

[SDGs]SDG2

[SDGs]SDG6

[SDGs]SDG8

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science