Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Exploring ensemble of models in taxonomy-based cross-domain sentiment classification
 
  • Details

Exploring ensemble of models in taxonomy-based cross-domain sentiment classification

Journal
2014 ACM International Conference on Information and Knowledge Management
Pages
1279-1288
ISBN
9781450325981
Date Issued
2014
Author(s)
Lin C.-K.
Lee Y.-Y.
Yu C.-H.
HSIN-HSI CHEN  
DOI
10.1145/2661829.2662071
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/413122
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937598798&doi=10.1145%2f2661829.2662071&partnerID=40&md5=f6ab8b4c8b646f58308f36afd75f2694
Abstract
Most cross-domain sentiment classification techniques consider a domain as a whole set of opinionated instances for training. However, many online shopping websites organize their data in terms of taxonomy. With multiple domains (or, nodes) organized in a tree-structured representation, we propose a general ensemble algorithm which takes into account: 1) the model application, 2) the model weight and 3) the strategies for selecting the most related models with respect to a target node. The traditional sentiment classification technique SVM and the transfer learning algorithm Spectral Features Alignment (SFA) were applied as our model applications. In addition, the model weight takes the tree information and the similarity between domains into account. Finally, two strategies, cosine function and taxonomy-based regression model (TBRM) are proposed to select the most related models with respect to a target node. Experimental results showed both (cosine function and TBRM) proposed strategies outperform two baselines on an Amazon dataset. Three tasks of the proposed methods surpass the gold standard generated by the in-domain classifiers trained on the labeled data from the target nodes. Good results from the three tasks enable this algorithm to shed some new light on eliminating the major difficulties in transfer learning research: the distribution gap. Copyright ? 2014 ACM.
Subjects
Domain adaptation
Ensemble learning
Opinion mining
Sentiment classification
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science