Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Modeling Interprocessor Communication and Performance Scalability for Distributed Deep Learning Systems
 
  • Details

Modeling Interprocessor Communication and Performance Scalability for Distributed Deep Learning Systems

Journal
2019 International Conference on High Performance Computing and Simulation, HPCS 2019
Pages
169-176
Date Issued
2019
Author(s)
Lyu Y.-H
Liu C.-Y
Lee C.-P
Tu C.-H
SHIH-HAO HUNG  
DOI
10.1109/HPCS48598.2019.9188168
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092042686&doi=10.1109%2fHPCS48598.2019.9188168&partnerID=40&md5=c0a59ee6c668b9afef2668017e8b17c1
https://scholars.lib.ntu.edu.tw/handle/123456789/581437
Abstract
While deep learning applications become popular, the design of deep learning systems is a critical task to unleash the computing power of underlying systems. Aside from the computing hardware, the computer networking is also a key factor that affects the delivered performance. When considering a large and complex model, the scalability of the system highly depends on the design of the networks, as well as the software behaviors. In this paper, we propose a profile-data-guided performance prediction method to estimate the performance of the system with desired high-speed interconnects, based on the profiling data obtained in a previous run. In particular, we leverage the open-source profiling tool, SOFA, for characterizing the software activities of deep learning software running in a computer cluster, and the characterized information is used to build the performance model for the model training process. When estimating the performance, SOFA is used to capture the performance critical factors for the model to make the predictions. To evaluate the proposed method, four popular deep learning models are adopted in our experiments, ResNet50, Inception3, Alexnet, and VGG16, where a computer cluster formed by four nodes is used to profile the training of the above models on TensorFlow. We ran the scalability analysis to analyze the size of the cluster, and the suitable computer networks for the models. By comparing the predicted data and those measured on the cluster, our model achieves up to 95% accuracy in most of the cases, with the maximum error rate of 10%. ? 2019 IEEE.
Subjects
Computer hardware; Computer networks; Deep learning; Open source software; Open systems; Scalability; Computer networking; Computing hardware; High-speed interconnects; Inter processor communication; Performance prediction; Performance scalability; Scalability analysis; Underlying systems; Learning systems
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science