Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Vector-FRI Recovery of Multi-Sensor Measurements
 
  • Details

Vector-FRI Recovery of Multi-Sensor Measurements

Journal
IEEE Transactions on Signal Processing
Journal Volume
70
Date Issued
2022-01-01
Author(s)
Guo, Ruiming
Li, Yongfei
THIERRY BLU  
Zhao, Hangfang
DOI
10.1109/TSP.2022.3204402
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/640452
URL
https://api.elsevier.com/content/abstract/scopus_id/85137933933
Abstract
Thanks to lowering costs, sensors of all kinds have increasingly been used in a wide variety of disciplines and fields, facilitating the rapid development of new technologies and applications. The information of interest (e.g. source location, refractive index, etc.) gets encoded in the measured sensor data, and the key problem is then to decode this information from the sensor measurements. In many cases, sensor data exhibit sparse features - 'innovations' - that typically take the form of a finite sum of sinusoids. In practice, the robust retrieval of such encoded information from multi-sensors data (array or network) is difficult due to the non-uniformity of instrument precision and noise (i.e. different across sensors). This motivates the development of a joint sparse ('vector Finite Rate of Innovation') recovery strategy for multi-sensor data: by fitting the data to a joint parametric model, an accurate sparse recovery can be achieved, even if the noise of the sensors is non-homogenous and correlated. Although developed for one-dimensional sensor data, we show that our method is easily extended to multi-dimensional sensor measurements, e.g. direction-of-arrival data of 2D planar array and interference fringes of underwater acoustics, which provides a generic solution to these applications. A very robust and efficient algorithm is proposed, which we validate in various conditions (simulations, multiple types of real data).
Subjects
data fusion | high-resolution | model-fitting | multi-dimensional sparse recovery | multi-sensor measurements | Vector finite-rate-of-innovation (FRI)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science