Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Spectrum Analysis of EEG Signals Using CNN to Model Patient's Consciousness Level Based on Anesthesiologists' Experience
 
  • Details

Spectrum Analysis of EEG Signals Using CNN to Model Patient's Consciousness Level Based on Anesthesiologists' Experience

Journal
IEEE Access
Journal Volume
7
Date Issued
2019-01-01
Author(s)
Liu, Quan
Cai, Jifa
SHOU-ZEN FAN  
Abbod, Maysam F.
Shieh, Jiann Shing
Kung, Yuchen
Lin, Longsong
DOI
10.1109/ACCESS.2019.2912273
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/637702
URL
https://api.elsevier.com/content/abstract/scopus_id/85065466603
Abstract
One of the most challenging predictive data analysis efforts is an accurate prediction of depth of anesthesia (DOA) indicators which has attracted growing attention since it provides patients a safe surgical environment in case of secondary damage caused by intraoperative awareness or brain injury. However, many researchers put heavily handcraft feature extraction or carefully tailored feature engineering to each patient to achieve very high sensitivity and low false prediction rate for a particular dataset. This limits the benefit of the proposed approaches if a different dataset is used. Recently, representations learned using the deep convolutional neural network (CNN) for object recognition are becoming a widely used model of the processing hierarchy in the human visual system. The correspondence between models and brain signals that holds the acquired activity at high temporal resolution has been explored less exhaustively. In this paper, deep learning CNN with a range of different architectures is designed for identifying related activities from raw electroencephalography (EEG). Specifically, an improved short-Time Fourier transform is used to stand for the time-frequency information after extracting the spectral images of the original EEG as input to CNN. Then CNN models are designed and trained to predict the DOA levels from EEG spectrum without handcrafted features, which presents an intuitive mapping process with high efficiency and reliability. As a result, the best trained CNN model achieved an accuracy of 93.50%, interpreted as CNN's deep learning to approximate the DOA by senior anesthesiologists, which highlights the potential of deep CNN combined with advanced visualization techniques for EEG-based brain mapping.
Subjects
convolutional neural network | Depth of anesthesia | electroencephalography | short-Time Fourier transform
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science