Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Ultra-Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs
 
  • Details

Ultra-Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs

Journal
Radiology
Journal Volume
290
Journal Issue
3
Pages
649-656
Date Issued
2019
Author(s)
Chen K.T.
Gong E.
de Carvalho Macruz F.B.
Xu J.
Boumis A.
Khalighi M.
Poston K.L.
Sha S.J.
Greicius M.D.
Mormino E.
Pauly J.M.
Srinivas S.
Zaharchuk G.
TZE-HSIANG CHEN  
DOI
10.1148/radiol.2018180940
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061959891&doi=10.1148%2fradiol.2018180940&partnerID=40&md5=326e6211b294ec5ee0c8615462bd816f
https://scholars.lib.ntu.edu.tw/handle/123456789/611664
Abstract
Purpose To reduce radiotracer requirements for amyloid PET/MRI without sacrificing diagnostic quality by using deep learning methods. Materials and Methods Forty data sets from 39 patients (mean age ± standard deviation [SD], 67 years ± 8), including 16 male patients and 23 female patients (mean age, 66 years ± 6 and 68 years ± 9, respectively), who underwent simultaneous amyloid (fluorine 18 [18F]-florbetaben) PET/MRI examinations were acquired from March 2016 through October 2017 and retrospectively analyzed. One hundredth of the raw list-mode PET data were randomly chosen to simulate a low-dose (1%) acquisition. Convolutional neural networks were implemented with low-dose PET and multiple MR images (PET-plus-MR model) or with low-dose PET alone (PET-only) as inputs to predict full-dose PET images. Quality of the synthesized images was evaluated while Bland-Altman plots assessed the agreement of regional standard uptake value ratios (SUVRs) between image types. Two readers scored image quality on a five-point scale (5 = excellent) and determined amyloid status (positive or negative). Statistical analyses were carried out to assess the difference of image quality metrics and reader agreement and to determine confidence intervals (CIs) for reading results. Results The synthesized images (especially from the PET-plus-MR model) showed marked improvement on all quality metrics compared with the low-dose image. All PET-plus-MR images scored 3 or higher, with proportions of images rated greater than 3 similar to those for the full-dose images (-10% difference [eight of 80 readings], 95% CI: -15%, -5%). Accuracy for amyloid status was high (71 of 80 readings [89%]) and similar to intrareader reproducibility of full-dose images (73 of 80 [91%]). The PET-plus-MR model also had the smallest mean and variance for SUVR difference to full-dose images. Conclusion Simultaneously acquired MRI and ultra-low-dose PET data can be used to synthesize full-dose-like amyloid PET images. ? RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Catana in this issue.
Subjects
4-(N-methylamino)-4'-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)stilbene
amyloid
aniline derivative
stilbene derivative
aged
Alzheimer disease
brain disease
cognitive defect
diagnostic imaging
diffuse Lewy body disease
female
human
male
middle aged
multimodal imaging
nuclear magnetic resonance imaging
parkinsonism
positron emission tomography
procedures
retrospective study
Aged
Alzheimer Disease
Amyloid
Aniline Compounds
Brain Diseases
Cognitive Dysfunction
Deep Learning
Female
Humans
Lewy Body Disease
Magnetic Resonance Imaging
Male
Middle Aged
Multimodal Imaging
Parkinsonian Disorders
Positron-Emission Tomography
Retrospective Studies
Stilbenes
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science