Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. RM-SSD: In-Storage Computing for Large-Scale Recommendation Inference
 
  • Details

RM-SSD: In-Storage Computing for Large-Scale Recommendation Inference

Journal
Proceedings - International Symposium on High-Performance Computer Architecture
Journal Volume
2022-April
Pages
1056-1070
Date Issued
2022
Author(s)
Sun X
Wan H
Li Q
CHIA-LIN YANG  
TEI-WEI KUO  
Xue C.J.
DOI
10.1109/HPCA53966.2022.00081
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130735559&doi=10.1109%2fHPCA53966.2022.00081&partnerID=40&md5=c99f9d855c9187a4bb520ab4b5598d3a
https://scholars.lib.ntu.edu.tw/handle/123456789/632317
Abstract
To meet the strict service level agreement requirements of recommendation systems, the entire set of embeddings in recommendation systems needs to be loaded into the memory. However, as the model and dataset for production-scale recommendation systems scale up, the size of the embeddings is approaching the limit of memory capacity. Limited physical memory constrains the algorithms that can be trained and deployed, posing a severe challenge for deploying advanced recommendation systems. Recent studies offload the embedding lookups into SSDs, which targets the embedding-dominated recommendation models. This paper takes it one step further and proposes to offload the entire recommendation system into SSD with in-storage computing capability. The proposed SSD-side FPGA solution leverages a low-end FPGA to speed up both the embedding-dominated and MLP-dominated models with high resource efficiency. We evaluate the performance of the proposed solution with a prototype SSD. Results show that we can achieve 20-100× throughput improvement compared with the baseline SSD and 1.5-15× improvement compared with the state-of-art. © 2022 IEEE.
Subjects
n/a
Other Subjects
Embeddings; Field programmable gate arrays (FPGA); Computing capability; Embeddings; Large-scales; Lookups; Memory capacity; N/a; Physical memory; Production scale; Scale-up; Servicelevel agreement (SLA); Recommender systems
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science